《商用微積分》勘誤表

課本頁數	位置	原文	訂正
p.54	習題 2-2 第 8 題	$\lim_{y\to 4} \frac{y^2 - 16}{\sqrt{y} - 2}$	$\lim_{y\to 4}\frac{y^2-16}{\sqrt{y}-2}$
p.59	習題 2-3 第 13 題	$\lim_{x \to 0^{-}} \frac{[[x+1]] + x }{x}$	$\lim_{x \to 0^{-}} \frac{[x+1] + x }{x}$
p.101	定理3-8標題	函數 $\frac{1}{g(x)}$ 的導數公式	函數 $\frac{1}{g(x)}$ 的導 <mark>必</mark> 數公式
p.170	習題 4-4 第 7 題	7. 假設某商業投資款項價值在時間 t 年時,由經驗得知可近似於函數 $f(t) = 750,000^{0.6\sqrt{t}}(元)$,求當 $t = 5$ (年) 時,投資之價值增加得有多快?	7. 假設某商業投資款項價值在時間 t 年時,由經驗得知可近似於函數 $f(t) = 750,000e^{0.6\sqrt{t}}$ (元),求當 $t = 5$ (年) 時,投資之價值增加得有多快?
p.186	習題 5-2 第 8 題	$f(x) = 3x^5 - 25x^3 - 60x$	$f(x) = 3x^5 - 25x^3 + 60x$
p.194	例題 3	例題 3 作 $f(x) = \frac{2x^2}{x^2 - 1}$ 的圖形。 1. 定義域為 $\{x x \neq \pm 1\} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$ 。	例題 3 作 $f(x) = \frac{2x^2}{x^2 - 1}$ 的圖形。 第 1. 定義域為 $\{x x \neq \pm 1\} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$ 。

p.228	習題 6-2 第 4 題	$4. \int \frac{x}{\sqrt[3]{1-2x^2}} dx (提示: \diamondsuit u = \sqrt[3]{1-2x^2})$	$4. \int \frac{x}{\sqrt[3]{1-2x^2}} dx (提示: \diamondsuit u = 1-2x^2)$
p.239	習題 6-6 第 4 題	4. 某公司生產 x 單位的商品時,其邊際成本函數為 $40-0.04x$ 元,若固定成本為 100 元,求	4. 某公司生產 x 單位的商品時,其邊際成本函數為 $40-0.04x$ 元,若固定成本為 $1,000$ 元,求
p.369	習題解答 習題 7-2 第 13 題	$13 \frac{656}{15}$	$13.\frac{656}{15}$
p.369	習題解答 習題 7-2 第 14 題	$13\frac{1}{3}$	$13.\frac{1}{3}$