
Chapter

讀完本章後，你將能夠

 ■ 了解明渠中的流動與管路中被加壓的

流動的區別。

 ■ 學到明渠中的不同流動區域及它們的

特性。

 ■ 預測流動中是否會發生水躍，並計算

水躍時，能量耗散的比率。

 ■ 了解如何使用水閘門及堰來量測明渠

中的流動率。
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O P E N - C H A N N E L  F L O W

Open-channel flow implies flow in a channel open to the atmosphere, 
but flow in a conduit is also open-channel flow if the liquid does not 
fill the conduit completely, and thus there is a free surface. An open-

channel flow involves liquids only (typically water or wastewater) exposed to 
a gas (usually air, which is at atmospheric pressure).

Flow in pipes is driven by gravity and/or a pressure difference, whereas 
flow in a channel is driven naturally by gravity. Water flow in a river, for 
example, is driven by the upstream and downstream elevation difference. The 
flow rate in an open channel is established by the dynamic balance between 
gravity and friction. Inertia of the flowing liquid also becomes important 
in unsteady flow. The free surface coincides with the hydraulic grade line 
(HGL) and the pressure is constant along the free surface. But the height of 
the free surface from the channel bottom and thus all dimensions of the flow 
cross-section along the channel are not known a priori—they change along 
with average flow velocity.

In this chapter we present the basic principles of open-channel flows and 
the associated correlations for steady one-dimensional flow in channels of 
common cross sections. Detailed informa-
tion can be obtained from several books 
written on the topic, some of which are 
listed in the references.
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OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Understand how flow in open 
channels differs from pressurized
flow in pipes

■ Learn the different flow regimes 
in open channels and their 
characteristics

■ Predict if hydraulic jumps are to 
occur during flow, and calculate 
the fraction of energy dissipated 
during hydraulic jumps

■ Understand how flow rates in 
open channels are measured 
using sluice gates and weirs

    CHAPTER
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Any flow of a liquid with a free surface is a 
type of open-channel flow. In this photograph, 

the Nicholson River meanders through 
northern Australia.

© Digital Vision/Getty RF
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任何具有自由表面的液體流動是明渠流的一種形

式。尼可順河彎曲地經過澳州北部。
© Digital Vision/Getty RF

明 渠流 (open-channel flow) 意指在對大氣開放的渠道中進行的流動，但是管道

中的流動如果液體並沒有完全充滿管道，以致有自由表面也是明渠流。明

渠流中的液體 (通常是水或廢水) 只對一種氣體曝露 (通常是空氣，其是在大氣壓力

下)。

管中的流動由重力或壓力差驅動，而渠道中的流動自然是由重力驅動的。例

如，河中的流水是由上游與下游的高度差所驅動的。一條明渠中的流率是重力與摩

擦力之間動力平衡所建立的。液體流動的慣性力在不穩定流中也會變得重要。自由

表面與水力坡線 (HGL) 一致，並且沿著自由表面的壓力是常數。但是從渠道底部

到自由表面的高度及沿著渠道的流動截面積的所有尺寸並不是事先就知道的－它

們會隨著平均流速而改變。

本章我們介紹明渠流的基本原理，以及具有常見截面的渠道中的穩定的一維流

動的相關的關係式。詳細的訊息可以從幾本討論這個主題的書中得到，其中一些列

在參考資料和建議讀物中。

學習目標



2 流 體 力 學

13-1　明渠流的分類

明渠流意指在對大氣開放的渠道中或在部分充滿液體的流

道中的流動，其特徵是存在著液體 –氣體的介面，稱為自由表

面 (圖 13-1)。大多數實際上會遭遇到的自然流動，例如小溪、

河流及洪水中水的流動，或是高速公路、停車場與屋頂上的雨

水的排洩都是明渠流。人造的明渠流系統包括灌溉系統、污水

管線、排水溝與邊溝，如何設計這種系統是一個重要的工程應

用領域。

在一個明渠中，邊壁與底面上的流速為零，原因是無滑動

條件，而渠道截面是對稱的幾何形狀時，最大速度是在中間平

面上，並且一般在稍低於自由表面的位置上，如圖 13-2 所示。

[由於二次流的關係 (即使在很窄的平直渠道中也會發生)，最大

軸向速度發生在低於自由表面的位置，通常在 25% 深度的範圍

之內。] 再者，對大多數的情況，流速在流動方向也會改變。

因此，明渠中的速度分佈 (即流動) 一般是三維的。然而在工

程實踐中，方程式通常是用渠道的一個截面上的平均速度寫出

來的。因為平均速度只隨流向距離 x 而變，V 是一個一維的變

數。一維化讓手算作為一種簡單的方式，以求解真實世界的問

題變得可能，因此在本章中我們的討論限制在可以使用一維平

均速度的流動上。不管其簡單性，一維的方程式提供了極正確

的結果，並且在實務中經常被使用。

在渠道壁上的無滑動條件造成速度梯度，並使壁面剪應力 tw 沿著溼邊發展出

來。在一個給定的截面上，壁面剪應力沿著溼邊變化並對流動造成阻力。這個阻力

的大小相依於流體的黏度與壁面上的速度梯度，且會受壁面粗糙度影響。

明渠流也可被分類為穩定的或不穩定的。如果在一個給定的位置上，流動不隨

時間而變，就稱為穩定的。在明渠流中一個代表性的量是流動深度 (flow depth) (或

替代地，平均速度)，可能會沿著渠道改變。如果流動深度在沿渠道的任何一個位

置上都不隨時間而變，此流動就稱為是穩定的 (雖然它從一個位置到另一個位置可

以改變)；否則流動就是不穩定的。本章我們只討論穩定流。

均勻流與變速流

明渠流也被分類為均勻的或不均勻的 (也稱為變速的)，端視流動深度 y (從渠

道底部到自由表面的垂直距離) 如何沿著渠道改變而定。如果流動深度 (從而平均

圖 13-2　一個梯形截面的明渠流的
典型的軸向速度輪廓圖；數值是相

對於平均速度的。
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(a)

(b)

FIGURE 13–1
Natural and human-made open-
channel flows are characterized by a 
free surface open to the atmosphere.
(a) © Doug Sherman/Geofile RF;
(b) Royalty-Free/CORBIS
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FIGURE 13–2
Typical constant axial velocity 
contours in an open channel of 
trapezoidal cross section; values are 
relative to the average velocity.

13–1 ■  CLASSIFICATION OF 
OPEN-CHANNEL FLOWS

Open-channel flow refers to the flow of liquids in channels open to the 
atmosphere or in partially filled conduits and is characterized by the pres-
ence of a liquid–gas interface called the free surface (Fig. 13–1). Most natu-
ral flows encountered in practice, such as the flow of water in creeks, 
rivers, and floods, as well as the draining of rainwater off highways, park-
ing lots, and roofs are open-channel flows. Human-made open-channel 
flow systems include irrigation systems, sewer lines, drainage ditches, and 
gutters, and the design of such systems is an important application area of 
engineering.
 In an open channel, the flow velocity is zero at the side and bottom surfaces 
because of the no-slip condition, and maximum at the midplane for sym-
metric geometries, typically somewhat below the free surface, as shown in 
Fig. 13–2. (Because of secondary flows that occur even in straight channels 
when they are narrow, the maximum axial velocity occurs below the free sur-
face, typically within the top 25 percent of depth.) Furthermore, flow velocity
also varies in the flow direction in most cases. Therefore, the velocity dis-
tribution (and thus flow) in open channels is, in general, three-dimensional. 
In engineering practice, however, the equations are written in terms of the 
average velocity at a cross section of the channel. Since the average velocity 
varies only with streamwise distance x, V is a one-dimensional variable. The 
one-dimensionality makes it possible to solve significant real-world problems 
in a simple manner by hand calculations, and we restrict our consideration in 
this chapter to flows with one-dimensional average velocity. Despite its sim-
plicity, the one-dimensional equations provide remarkably accurate results 
and are commonly used in practice.
 The no-slip condition on the channel walls gives rise to velocity gradients, 
and wall shear stress �w develops along the wetted surfaces. The wall shear 
stress varies along the wetted perimeter at a given cross section and offers 
resistance to flow. The magnitude of this resistance depends on the viscosity 
of the fluid as well as the velocity gradients at the wall surface, which in 
turn depend on wall roughness.
 Open-channel flows are also classified as being steady or unsteady. A flow 
is said to be steady if there is no change with time at a given location. The 
representative quantity in open-channel flows is the flow depth (or alter-
nately, the average velocity), which may vary along the channel. The flow 
is said to be steady if the flow depth does not vary with time at any given 
location along the channel (although it may vary from one location to 
another). Otherwise, the flow is unsteady. In this chapter we deal with 
steady flow only.

Uniform and Varied Flows
Flow in open channels is also classified as being uniform or nonuniform 
(also called varied ), depending on how the flow depth y (the distance of the 
free surface from the bottom of the channel measured in the vertical direc-
tion) varies along the channel. The flow in a channel is said to be uniform 
if the flow depth (and thus the average velocity) remains constant. Other-
wise, the flow is said to be nonuniform or varied, indicating that the flow 
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圖 13-1　自然的與人造的明渠流的
特徵是具有一個對大氣開放的自由

表面。
(a) © Doug Sherman/Geofile RF;
(b) Royalty-Free/CORBIS
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第 13 章　明渠流 3

速度) 維持不變，明渠流就稱為均勻的 (uniform)；否則流動就

稱為是不均勻的或變速的 (nonuniform 或 varied)，即指流動深度

在流道方向隨著距離而改變。均勻流條件在實務中常見於長而

直的渠道段，且具有等斜率、等粗糙度與等截面積的流動中。

在具有等斜率且等截面積的明渠中，液體加速直到由於

摩擦效應的水頭損失等於高度下降量為止。此時液體達到其終

端速度，而均勻流建立起來了。流動維持均勻的，只要渠道的

斜率、截面積與表面粗糙度維持不變。均勻流的流動深度稱為正常水深 (normal 

depth) yn，其在明渠流中是一個重要的特徵參數 (圖 13-3)。

在明渠中出現的障礙物，例如一個閘門或在斜率或截面上的變化，會造成流動

深度的改變，從而使流動變成變速的或不均勻的。這種變速流在自然的或人造的明

渠 (例如河流)、灌溉系統與污水管線中都很常見。如果流動深度在流動方向的一個

相當短的距離有很明顯的改變，這種變速流就稱為急變流 (rapidly varied flow, RVF) 

(例如水流通過一個部分開啟的閘門或流過瀑布)。如果流動深度在流動方向的一段

很長的距離之間逐漸改變，就稱為漸變流 (gradually varied flow, GVF)。一個漸變流

區域通常發生在急變流與均勻流區域之間，如圖 13-4 所示。

在漸變流中，我們可以用一維的平均速度工作，就像在均勻流中所做的。然而

對於急變流，平均速度並不是最有用或最適當的參數。因此，急變流的分析是非

常複雜的，特別當流動是不穩定時 (例如岸邊的破浪)。對於一個已知的排放率，一

個指定的明渠流中的一個漸變流區域的流動高度 (即自由表面的高度) 可以從一個

流動條件為已知的截面積開始，用逐步的方法來決定之，並計算每一步中的水頭損

失、高度下降及平均速度。

渠道中的層流與紊流

像管流一樣，明渠流可以是層流、過渡流或紊流，視雷諾數的值而定，雷諾數

可表示為
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depth varies with distance in the flow direction. Uniform flow conditions 
are commonly encountered in practice in long straight sections of channels 
with constant slope, constant roughness, and constant cross section.
 In open channels of constant slope and constant cross section, the liquid 
accelerates until the head loss due to frictional effects equals the elevation 
drop. The liquid at this point reaches its terminal velocity, and uniform flow 
is established. The flow remains uniform as long as the slope, cross section, 
and surface roughness of the channel remain unchanged. The flow depth in 
uniform flow is called the normal depth yn, which is an important charac-
teristic parameter for open-channel flows (Fig. 13–3).
 The presence of an obstruction in the channel, such as a gate or a change 
in slope or cross section, causes the flow depth to vary, and thus the flow 
to become varied or nonuniform. Such varied flows are common in both 
natural and human-made open channels such as rivers, irrigation systems, 
and sewer lines. The varied flow is called rapidly varied flow (RVF) if the 
flow depth changes markedly over a relatively short distance in the flow 
direction (such as the flow of water past a partially open gate or over a 
falls), and gradually varied flow (GVF) if the flow depth changes gradu-
ally over a long distance along the channel. A gradually varied flow region 
typically occurs between rapidly varied and uniform flow regions, as shown 
in Fig. 13–4.
 In gradually varied flows, we can work with the one-dimensional average 
velocity just as we can with uniform flows. However, average velocity is not 
always the most useful or most appropriate parameter for rapidly varying 
flows. Therefore, the analysis of rapidly varied flows is rather complicated, 
especially when the flow is unsteady (such as the breaking of waves on the 
shore). For a known discharge rate, the flow height in a gradually varied 
flow region (i.e., the profile of the free surface) in a specified open chan-
nel can be determined in a step-by-step manner by starting the analysis at 
a cross section where the flow conditions are known, and evaluating head 
loss, elevation drop, and then the average velocity for each step.

Laminar and Turbulent Flows in Channels
Like pipe flow, open-channel flow can be laminar, transitional, or turbulent, 
depending on the value of the Reynolds number expressed as

 Re 5
rVRh

m
5

VRh

n
 (13–1)

V �y � yn � 

FIGURE 13–3
For uniform flow in an open channel, 
the flow depth y and the average flow 

velocity V remain constant.

GVFUF RVF GVF UF

FIGURE 13–4
Uniform flow (UF), gradually varied 
flow (GVF), and rapidly varied flow 

(RVF) in an open channel.
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圖  13-3　在一個明渠流的均勻流
中，流動深度與平均流速 V 維持為
常數。
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均勻流

常數 常數

斜率：S0 =常數

圖 13-4　一個明渠中的均勻流 
(UF)、漸變流 (GVF) 與急變流 
(RVF)。
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其中 V 是平均液體速度，n 是運動黏度，而 Rh 是水力半徑 

(hydraulic radius) 定義為截面積 Ac 與溼邊長 p 的比。

水力半徑： 

728
OPEN-CHANNEL FLOW

Here V is the average liquid velocity, � is the kinematic viscosity, and Rh is 
the hydraulic radius defined as the ratio of the cross-sectional flow area Ac 
and the wetted perimeter p,

Hydraulic radius: Rh 5
Ac

p
  (m) (13–2)

Considering that open channels come with rather irregular cross sections, 
the hydraulic radius serves as the characteristic dimension and brings uni-
formity to the treatment of open channels. Also, the Reynolds number is 
constant for the entire uniform flow section of an open channel.
 You might expect that the hydraulic radius would be defined as half 
the hydraulic diameter, but this is unfortunately not the case. Recall that the 
hydraulic diameter Dh for pipe flow is defined as Dh � 4Ac/p so that 
the hydraulic diameter reduces to the pipe diameter for circular pipes. The 
relation between hydraulic radius and hydraulic diameter is

Hydraulic diameter: Dh 5
4Ac

p
54Rh (13–3)

So, we see that the hydraulic radius is in fact one-fourth, rather than one-
half, of the hydraulic diameter (Fig. 13–5).
 Therefore, a Reynolds number based on the hydraulic radius is one-fourth 
of the Reynolds number based on hydraulic diameter as the characteris-
tic dimension. So it will come as no surprise that the flow is laminar for 
Re � 2000 in pipe flow, but for Re � 500 in open-channel flow. Also, open-
channel flow is usually turbulent for Re � 2500 and transitional for 500 � 
Re � 2500. Laminar flow is encountered when a thin layer of water (such 
as the rainwater draining off a road or parking lot) flows at a low velocity.
 The kinematic viscosity of water at 20�C is 1.00 � 10�6 m2/s, and the 
average flow velocity in open channels is usually above 0.5 m/s. Also, the 
hydraulic radius is usually greater than 0.1 m. Therefore, the Reynolds num-
ber associated with water flow in open channels is typically above 50,000, 
and thus the flow is almost always turbulent.
 Note that the wetted perimeter includes the sides and the bottom of the 
channel in contact with the liquid—it does not include the free surface and 
the parts of the sides exposed to air. For example, the wetted perimeter and the 
cross-sectional flow area for a rectangular channel of height h and width b 
containing water of depth y are p � b � 2y and Ac � yb, respectively. 
Then,

Rectangular channel: Rh 5
Ac

p
5

yb

b 12y
5

y

1 12y/b
 (13–4)

As another example, the hydraulic radius for the drainage of water of depth y 
off a parking lot of width b is (Fig. 13–6)

Liquid layer of thickness y: Rh 5
Ac

p
5

yb

b 12y
>

yb

b
> y (13–5)

since b �� y. Therefore, the hydraulic radius for the flow of a liquid film 
over a large surface is simply the thickness of the liquid layer.

??
?

FIGURE 13–5
The relationship between the hydraulic 
radius and hydraulic diameter is not 
what you might expect.
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 (13-2)

考慮到明渠通常有相當不規則的截面，水力半徑可以作為特徵

長度，並且在處理明渠時帶來一致性。同時對於一個明渠的整

個均勻的流動段雷諾數是常數。

你可能會預期水力半徑被定義為水力直徑的一半，但不

幸的是，情況並非如此。回想管流的水力直徑 Dh 被定義為 

Dh =4Ac /p，使圓管的水力直徑正好就是圓管直徑。水力半徑與

水力直徑的關係是

水力直徑： 
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Here V is the average liquid velocity, � is the kinematic viscosity, and Rh is 
the hydraulic radius defined as the ratio of the cross-sectional flow area Ac 
and the wetted perimeter p,

Hydraulic radius: Rh 5
Ac

p
  (m) (13–2)

Considering that open channels come with rather irregular cross sections, 
the hydraulic radius serves as the characteristic dimension and brings uni-
formity to the treatment of open channels. Also, the Reynolds number is 
constant for the entire uniform flow section of an open channel.
 You might expect that the hydraulic radius would be defined as half 
the hydraulic diameter, but this is unfortunately not the case. Recall that the 
hydraulic diameter Dh for pipe flow is defined as Dh � 4Ac/p so that 
the hydraulic diameter reduces to the pipe diameter for circular pipes. The 
relation between hydraulic radius and hydraulic diameter is

Hydraulic diameter: Dh 5
4Ac

p
54Rh (13–3)

So, we see that the hydraulic radius is in fact one-fourth, rather than one-
half, of the hydraulic diameter (Fig. 13–5).
 Therefore, a Reynolds number based on the hydraulic radius is one-fourth 
of the Reynolds number based on hydraulic diameter as the characteris-
tic dimension. So it will come as no surprise that the flow is laminar for 
Re � 2000 in pipe flow, but for Re � 500 in open-channel flow. Also, open-
channel flow is usually turbulent for Re � 2500 and transitional for 500 � 
Re � 2500. Laminar flow is encountered when a thin layer of water (such 
as the rainwater draining off a road or parking lot) flows at a low velocity.
 The kinematic viscosity of water at 20�C is 1.00 � 10�6 m2/s, and the 
average flow velocity in open channels is usually above 0.5 m/s. Also, the 
hydraulic radius is usually greater than 0.1 m. Therefore, the Reynolds num-
ber associated with water flow in open channels is typically above 50,000, 
and thus the flow is almost always turbulent.
 Note that the wetted perimeter includes the sides and the bottom of the 
channel in contact with the liquid—it does not include the free surface and 
the parts of the sides exposed to air. For example, the wetted perimeter and the 
cross-sectional flow area for a rectangular channel of height h and width b 
containing water of depth y are p � b � 2y and Ac � yb, respectively. 
Then,
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As another example, the hydraulic radius for the drainage of water of depth y 
off a parking lot of width b is (Fig. 13–6)

Liquid layer of thickness y: Rh 5
Ac
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yb

b 12y
>
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since b �� y. Therefore, the hydraulic radius for the flow of a liquid film 
over a large surface is simply the thickness of the liquid layer.

??
?

FIGURE 13–5
The relationship between the hydraulic 
radius and hydraulic diameter is not 
what you might expect.
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 (13-3)

因此，我們看出來事實上水力半徑是水力直徑的 1/4 而不是 1/2 

(圖 13-5)。

所以，一個基於水力半徑的雷諾數是基於水力直徑作為特徵尺寸的雷諾數的 

1/4。因此，在管流中當 Re ≲2000 為層流時，但在明渠流中卻是 Re ≲500 為層流

就不奇怪了。同時，明渠流一般當 Re ≳2500 時是紊流，而在 500 ≲Re≲ 2500 時是

過渡流。層流是當一細層水流 (例如雨水從路面或停車場排洩時) 以低速度流動時

會遭遇到。

水在 20°C 的運動黏度是 1.00 ×10−6 m2/s，而明渠中的平均流速通常高於 0.5 

m/s。同時，水力半徑一般大於 0.1 m。因此，明渠中的水流的雷諾數一般會大於 

50,000，使流動幾乎總是紊流的。

注意溼邊包括渠道中與液體接觸的兩邊與底邊，但不包括自由表面，及兩邊與

空氣接觸的部分。例如一個矩形渠道，高度 h、寬度 b 且含水的深度為 y，其溼邊

長與截面積分別為 p=b +2y，Ac =yb。因此，

矩形渠道： 
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Here V is the average liquid velocity, � is the kinematic viscosity, and Rh is 
the hydraulic radius defined as the ratio of the cross-sectional flow area Ac 
and the wetted perimeter p,

Hydraulic radius: Rh 5
Ac

p
  (m) (13–2)

Considering that open channels come with rather irregular cross sections, 
the hydraulic radius serves as the characteristic dimension and brings uni-
formity to the treatment of open channels. Also, the Reynolds number is 
constant for the entire uniform flow section of an open channel.
 You might expect that the hydraulic radius would be defined as half 
the hydraulic diameter, but this is unfortunately not the case. Recall that the 
hydraulic diameter Dh for pipe flow is defined as Dh � 4Ac/p so that 
the hydraulic diameter reduces to the pipe diameter for circular pipes. The 
relation between hydraulic radius and hydraulic diameter is

Hydraulic diameter: Dh 5
4Ac

p
54Rh (13–3)

So, we see that the hydraulic radius is in fact one-fourth, rather than one-
half, of the hydraulic diameter (Fig. 13–5).
 Therefore, a Reynolds number based on the hydraulic radius is one-fourth 
of the Reynolds number based on hydraulic diameter as the characteris-
tic dimension. So it will come as no surprise that the flow is laminar for 
Re � 2000 in pipe flow, but for Re � 500 in open-channel flow. Also, open-
channel flow is usually turbulent for Re � 2500 and transitional for 500 � 
Re � 2500. Laminar flow is encountered when a thin layer of water (such 
as the rainwater draining off a road or parking lot) flows at a low velocity.
 The kinematic viscosity of water at 20�C is 1.00 � 10�6 m2/s, and the 
average flow velocity in open channels is usually above 0.5 m/s. Also, the 
hydraulic radius is usually greater than 0.1 m. Therefore, the Reynolds num-
ber associated with water flow in open channels is typically above 50,000, 
and thus the flow is almost always turbulent.
 Note that the wetted perimeter includes the sides and the bottom of the 
channel in contact with the liquid—it does not include the free surface and 
the parts of the sides exposed to air. For example, the wetted perimeter and the 
cross-sectional flow area for a rectangular channel of height h and width b 
containing water of depth y are p � b � 2y and Ac � yb, respectively. 
Then,

Rectangular channel: Rh 5
Ac
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5
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5
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1 12y/b
 (13–4)

As another example, the hydraulic radius for the drainage of water of depth y 
off a parking lot of width b is (Fig. 13–6)

Liquid layer of thickness y: Rh 5
Ac

p
5

yb

b 12y
>

yb

b
> y (13–5)

since b �� y. Therefore, the hydraulic radius for the flow of a liquid film 
over a large surface is simply the thickness of the liquid layer.

??
?

FIGURE 13–5
The relationship between the hydraulic 
radius and hydraulic diameter is not 
what you might expect.

725-786_cengel_ch13.indd   728 7/2/13   6:56 PM

 (13-4)

作為另一個例子，一個寬度為 b 的停車場，排水深度為 y 時的水力半徑為 (圖 13-6)

深度 y 的液體層： 
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Here V is the average liquid velocity, � is the kinematic viscosity, and Rh is 
the hydraulic radius defined as the ratio of the cross-sectional flow area Ac 
and the wetted perimeter p,

Hydraulic radius: Rh 5
Ac

p
  (m) (13–2)

Considering that open channels come with rather irregular cross sections, 
the hydraulic radius serves as the characteristic dimension and brings uni-
formity to the treatment of open channels. Also, the Reynolds number is 
constant for the entire uniform flow section of an open channel.
 You might expect that the hydraulic radius would be defined as half 
the hydraulic diameter, but this is unfortunately not the case. Recall that the 
hydraulic diameter Dh for pipe flow is defined as Dh � 4Ac/p so that 
the hydraulic diameter reduces to the pipe diameter for circular pipes. The 
relation between hydraulic radius and hydraulic diameter is

Hydraulic diameter: Dh 5
4Ac

p
54Rh (13–3)

So, we see that the hydraulic radius is in fact one-fourth, rather than one-
half, of the hydraulic diameter (Fig. 13–5).
 Therefore, a Reynolds number based on the hydraulic radius is one-fourth 
of the Reynolds number based on hydraulic diameter as the characteris-
tic dimension. So it will come as no surprise that the flow is laminar for 
Re � 2000 in pipe flow, but for Re � 500 in open-channel flow. Also, open-
channel flow is usually turbulent for Re � 2500 and transitional for 500 � 
Re � 2500. Laminar flow is encountered when a thin layer of water (such 
as the rainwater draining off a road or parking lot) flows at a low velocity.
 The kinematic viscosity of water at 20�C is 1.00 � 10�6 m2/s, and the 
average flow velocity in open channels is usually above 0.5 m/s. Also, the 
hydraulic radius is usually greater than 0.1 m. Therefore, the Reynolds num-
ber associated with water flow in open channels is typically above 50,000, 
and thus the flow is almost always turbulent.
 Note that the wetted perimeter includes the sides and the bottom of the 
channel in contact with the liquid—it does not include the free surface and 
the parts of the sides exposed to air. For example, the wetted perimeter and the 
cross-sectional flow area for a rectangular channel of height h and width b 
containing water of depth y are p � b � 2y and Ac � yb, respectively. 
Then,

Rectangular channel: Rh 5
Ac
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5

yb

b 12y
5
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1 12y/b
 (13–4)

As another example, the hydraulic radius for the drainage of water of depth y 
off a parking lot of width b is (Fig. 13–6)

Liquid layer of thickness y: Rh 5
Ac

p
5

yb

b 12y
>

yb

b
> y (13–5)

since b �� y. Therefore, the hydraulic radius for the flow of a liquid film 
over a large surface is simply the thickness of the liquid layer.

??
?

FIGURE 13–5
The relationship between the hydraulic 
radius and hydraulic diameter is not 
what you might expect.
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 (13-5)

圖 13-5　水力半徑與水力直徑的關
係可能不是你預期的。
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Here V is the average liquid velocity, � is the kinematic viscosity, and Rh is 
the hydraulic radius defined as the ratio of the cross-sectional flow area Ac 
and the wetted perimeter p,

Hydraulic radius: Rh 5
Ac

p
  (m) (13–2)

Considering that open channels come with rather irregular cross sections, 
the hydraulic radius serves as the characteristic dimension and brings uni-
formity to the treatment of open channels. Also, the Reynolds number is 
constant for the entire uniform flow section of an open channel.
 You might expect that the hydraulic radius would be defined as half 
the hydraulic diameter, but this is unfortunately not the case. Recall that the 
hydraulic diameter Dh for pipe flow is defined as Dh � 4Ac/p so that 
the hydraulic diameter reduces to the pipe diameter for circular pipes. The 
relation between hydraulic radius and hydraulic diameter is

Hydraulic diameter: Dh 5
4Ac

p
54Rh (13–3)

So, we see that the hydraulic radius is in fact one-fourth, rather than one-
half, of the hydraulic diameter (Fig. 13–5).
 Therefore, a Reynolds number based on the hydraulic radius is one-fourth 
of the Reynolds number based on hydraulic diameter as the characteris-
tic dimension. So it will come as no surprise that the flow is laminar for 
Re � 2000 in pipe flow, but for Re � 500 in open-channel flow. Also, open-
channel flow is usually turbulent for Re � 2500 and transitional for 500 � 
Re � 2500. Laminar flow is encountered when a thin layer of water (such 
as the rainwater draining off a road or parking lot) flows at a low velocity.
 The kinematic viscosity of water at 20�C is 1.00 � 10�6 m2/s, and the 
average flow velocity in open channels is usually above 0.5 m/s. Also, the 
hydraulic radius is usually greater than 0.1 m. Therefore, the Reynolds num-
ber associated with water flow in open channels is typically above 50,000, 
and thus the flow is almost always turbulent.
 Note that the wetted perimeter includes the sides and the bottom of the 
channel in contact with the liquid—it does not include the free surface and 
the parts of the sides exposed to air. For example, the wetted perimeter and the 
cross-sectional flow area for a rectangular channel of height h and width b 
containing water of depth y are p � b � 2y and Ac � yb, respectively. 
Then,
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As another example, the hydraulic radius for the drainage of water of depth y 
off a parking lot of width b is (Fig. 13–6)

Liquid layer of thickness y: Rh 5
Ac
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since b �� y. Therefore, the hydraulic radius for the flow of a liquid film 
over a large surface is simply the thickness of the liquid layer.
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FIGURE 13–5
The relationship between the hydraulic 
radius and hydraulic diameter is not 
what you might expect.
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從小學開始，我就知道半徑
是直徑的一半，但現在他們
卻告訴我，水力半徑是水力
直徑的 1/4！



第 13 章　明渠流 5

因為 b >>y。因此一個液體薄層在一個很大表面上的流動的水力半徑簡單地即為液

體層的厚度。

13-2　福勞數與波速

明渠流也可分類為次臨界  (subcritical)、臨界  (critical) 或超臨界  (super 

critical)，端視在第 7 章中定義的無因次的福勞數的數值而定。福勞數定義為

福勞數： 
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CHAPTER 13

13–2 ■  FROUDE NUMBER AND WAVE SPEED
Open-channel flow is also classified as subcritical, critical, or supercritical, 
depending on the value of the dimensionless Froude number mentioned in 
Chap. 7 and defined as

Froude number: Fr 5
V

"gL c

 (13–6)

where g is the gravitational acceleration, V is the average liquid velocity 
at a cross section, and Lc is the characteristic length. Lc is taken to be the 
flow depth y for wide rectangular channels, and Fr � V/!gy. The Froude 
number is an important parameter that governs the character of flow in open 
channels. The flow is classified as

 Fr , 1  Subcritical or tranquil flow

 Fr 5 1  Critical flow (13–7)

 Fr . 1  Supercritical or rapid flow
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FIGURE 13–6
Hydraulic radius relations for various 

open-channel geometries.
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 (13-6)

其中 g 是重力加速度，V 是在一個截面的平均液體速度，而 Lc 是特徵長度。對寬

的矩形渠道，Lc 取為流動深度 y，因此 
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13–2 ■  FROUDE NUMBER AND WAVE SPEED
Open-channel flow is also classified as subcritical, critical, or supercritical, 
depending on the value of the dimensionless Froude number mentioned in 
Chap. 7 and defined as

Froude number: Fr 5
V
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where g is the gravitational acceleration, V is the average liquid velocity 
at a cross section, and Lc is the characteristic length. Lc is taken to be the 
flow depth y for wide rectangular channels, and Fr � V/!gy. The Froude 
number is an important parameter that governs the character of flow in open 
channels. The flow is classified as

 Fr , 1  Subcritical or tranquil flow

 Fr 5 1  Critical flow (13–7)

 Fr . 1  Supercritical or rapid flow
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。福勞數是一個重要參數，主

宰著明渠流的流動特性。流動可以分類為
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13–2 ■  FROUDE NUMBER AND WAVE SPEED
Open-channel flow is also classified as subcritical, critical, or supercritical, 
depending on the value of the dimensionless Froude number mentioned in 
Chap. 7 and defined as

Froude number: Fr 5
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where g is the gravitational acceleration, V is the average liquid velocity 
at a cross section, and Lc is the characteristic length. Lc is taken to be the 
flow depth y for wide rectangular channels, and Fr � V/!gy. The Froude 
number is an important parameter that governs the character of flow in open 
channels. The flow is classified as

 Fr , 1  Subcritical or tranquil flow

 Fr 5 1  Critical flow (13–7)

 Fr . 1  Supercritical or rapid flow
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(a) 圓渠道 (u 用弳度)

(b) 梯形渠道

(c) 矩形渠道

(d) 厚度 y 的液體薄層

圖 13-6　各種明渠幾何的水力半
徑關係式。
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Open-channel flow is also classified as subcritical, critical, or supercritical, 
depending on the value of the dimensionless Froude number mentioned in 
Chap. 7 and defined as

Froude number: Fr 5
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where g is the gravitational acceleration, V is the average liquid velocity 
at a cross section, and Lc is the characteristic length. Lc is taken to be the 
flow depth y for wide rectangular channels, and Fr � V/!gy. The Froude 
number is an important parameter that governs the character of flow in open 
channels. The flow is classified as

 Fr , 1  Subcritical or tranquil flow

 Fr 5 1  Critical flow (13–7)

 Fr . 1  Supercritical or rapid flow
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次臨界流或靜流 (tranquil flow)

臨界流

超臨界流或急變流 (rapid flow)

 (13-7)

這類似可壓縮流中相對於馬赫數的分類：對於 Ma <1 為

次音速；對於 Ma =1 為音速，及對於 Ma >1 為超音速 (圖 13-

7)。的確，福勞數的分母有速度的因次，它代表微小擾動在靜

止液體中移動的速度 c0，這是本節稍後要證明的。因此類似於

馬赫數，福勞數代表流速對波速之比，Fr =V/c0，就像馬赫數代

表流速對音速之比，Ma =V/c。

福勞數也代表慣性力 (或動力) 對重力 (或重量) 之比的平方

根。這可以藉由將福勞數平方 V2/gLc 的分子與分母都乘以 rA 來

說明，其中 r 是密度，A 是代表性面積，這給出
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 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma � 1, sonic for Ma � 1, and supersonic for 
Ma � 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr � V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma � V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by �A, where � is density and A is a represen-
tative area, which gives

Fr2 5
V 

2

gL c

rA

rA
5

2(1
2rV 2A)

mg
r

Inertia force

Gravity force
(13–8)

Here LcA represents volume, �LcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2�V 2A, which can be 
thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr � 1), a small disturbance trav-
els upstream (with a velocity c0 � V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr � 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V � c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr � 1, is swept 
downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V

#
5AcV 5Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

(13–9)

For a rectangular channel of width b we have Ac � byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a
V
#

  

2

gb2b
1/3

 (13–10)

The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).
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慣性力

重力
 (13-8)

其中 LcA 代表體積，rLcA 是此流體體積的質量，而 mg 是重量，分子是慣性力  
1
2 rV2A 的兩倍，其可被想成是動壓 1

2 rV2 乘以截面積 A。因此，明渠中的流動，當

福勞數大的時候由慣性力主宰，當福勞數小的時候則由重力主宰。

因此在低流速時 (Fr <1)，小擾動向上游移動 (相對於一個靜止觀察者以速度 

c0 −V) 並影響上游的條件，此稱為次臨界流或靜流；但是當高流速時 (Fr >1)，小

擾動不能向上游移動 (事實上，此波動以相對於一個靜止觀察者的速度 V −c0 被

沖向下游)，上游的條件無法被下游的條件所影響，此稱為超臨界流或急變流。此

種情況的流動被上游的條件所控制。因此一個表面波當 Fr <1 時向上游移動；當 

Fr >1 時被沖向下游；而當 Fr=1 時似乎是在表面上凍住了。再者，當水深相對於

擾動的波長是淺的時候，表面波的速度隨著流動深度 y 而增加，因此一個表面擾動

在深渠道中傳播的速度較在淺渠道中快上許多。

考慮一個液體以體積流率 
⋅
V  在一個截面積 Ac 的矩形明渠道中的流動，當流

動是臨界的時候，Fr =1，且其平均速度為 V = gyc，其中 yc 是臨界深度 (critical 

depth)。注意 
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 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma � 1, sonic for Ma � 1, and supersonic for 
Ma � 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr � V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma � V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by �A, where � is density and A is a represen-
tative area, which gives

Fr2 5
V 

2

gL c

rA

rA
5

2(1
2rV 2A)

mg
r

Inertia force

Gravity force
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Here LcA represents volume, �LcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2�V 2A, which can be 
thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr � 1), a small disturbance trav-
els upstream (with a velocity c0 � V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr � 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V � c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr � 1, is swept 
downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V

#
5AcV 5Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

(13–9)

For a rectangular channel of width b we have Ac � byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a
V
#

  

2

gb2b
1/3

 (13–10)

The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).
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=AcV=Ac gyc
，臨界深度可被表示為

臨界深度 (一般)： 
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 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma � 1, sonic for Ma � 1, and supersonic for 
Ma � 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr � V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma � V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by �A, where � is density and A is a represen-
tative area, which gives
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Here LcA represents volume, �LcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2�V 2A, which can be 
thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr � 1), a small disturbance trav-
els upstream (with a velocity c0 � V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr � 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V � c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr � 1, is swept 
downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V

#
5AcV 5Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

(13–9)

For a rectangular channel of width b we have Ac � byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a
V
#

  

2
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 (13–10)

The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).
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 (13-9)

對一個寬度 b 的矩形渠道，我們有 Ac =byc，因此臨界深度關係式簡化成

圖 13-7　可壓縮流中的馬赫數與明
渠流中福勞數之間的相似性。
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 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma � 1, sonic for Ma � 1, and supersonic for 
Ma � 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr � V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma � V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by �A, where � is density and A is a represen-
tative area, which gives
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Here LcA represents volume, �LcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2�V 2A, which can be 
thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr � 1), a small disturbance trav-
els upstream (with a velocity c0 � V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr � 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V � c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr � 1, is swept 
downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V

#
5AcV 5Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

(13–9)

For a rectangular channel of width b we have Ac � byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a
V
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 (13–10)

The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).
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臨界深度 (矩形)： 
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 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma � 1, sonic for Ma � 1, and supersonic for 
Ma � 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr � V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma � V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by �A, where � is density and A is a represen-
tative area, which gives
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Here LcA represents volume, �LcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2�V 2A, which can be 
thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr � 1), a small disturbance trav-
els upstream (with a velocity c0 � V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr � 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V � c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr � 1, is swept 
downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V

#
5AcV 5Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
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(13–9)

For a rectangular channel of width b we have Ac � byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a
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 (13–10)

The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).
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 (13-10)

對於次臨界流，液體的深度 y >yc；對於超臨界流，則是 y < yc 

(圖 13-8)。

就像在可壓縮流中一樣，一個液體可以從次臨界流加速到

超臨界流。當然，也可以從超臨界流減速到次臨界流，並且可

經歷一個震波來做到。在此情況的震波被稱為水躍 (hydraulic 

jump)，它對應到可壓縮流中的正震波。因此，明渠流與可壓縮

流的相似性是很顯著的。

表面波的速度

我們都熟悉在海洋、湖泊、河流，甚至在游泳池的自由表

面上形成的水波。表面可以很高，像我們在海洋中見到的，也

有剛好可以察覺的。有些表面是平滑的，有些表面是破碎的。

對波運動的基本了解在研究明渠流的某些方面是必須的。這裡

我們只提出一個簡潔的描述。波運動的比較詳細地處理可以從

許多描寫這個主題的書裡發現。

研究明渠流時一個重要的參數是波速 (wave speed) c0，這是

一個表面擾動在液體中移動的速度。考慮一個長且寬的渠道，

開始時包含一個高度為 y 的靜止液體。渠道的一端被以速度 dV 

移動，產生了一個高度 dy 的表面波以速度 c0 朝向靜止液體傳

播，如圖 13-9a 所示。

現在考慮一個圍繞著波前的控制體積並隨著它移動，如圖 

13-9b 所示。對一個隨著波前移動的觀察者而言，其右邊的液體

似乎以速度 c0 流向波前，而其左邊的液體似乎是以速度 c0 −dV 

離開波前。當然觀察者會認為圍繞波前 (包括他自己) 的控制體

積似乎是靜止的，並且他看到的是一個穩定流過程。

對這個寬度 b 的控制體積的穩定流，其質量守恆  ⋅m1 = ⋅m2 (或連續方程式) 可以

被表示為
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 As in compressible flow, a liquid can accelerate from subcritical to 
supercritical flow. Of course, it can also decelerate from supercritical to 
subcritical flow, and it can do so by undergoing a shock. The shock in 
this case is called a hydraulic jump, which corresponds to a normal shock 
in compressible flow. Therefore, the analogy between open-channel flow and 
compressible flow is remarkable.

Speed of Surface Waves
We are all familiar with the waves forming on the free surfaces of oceans, 
lakes, rivers, and even swimming pools. The surface waves can be very 
high, like the ones we see on the oceans, or barely noticeable. Some are 
smooth; some break on the surface. A basic understanding of wave motion 
is necessary for the study of certain aspects of open-channel flow, and here 
we present a brief description. A detailed treatment of wave motion can be 
found in numerous books written on the subject.
 An important parameter in the study of open-channel flow is the wave 
speed c0, which is the speed at which a surface disturbance travels through 
a liquid. Consider a long, wide channel that initially contains a still liquid 
of height y. One end of the channel is moved with speed �V, generating a 
surface wave of height �y propagating at a speed of c0 into the still liquid, as 
shown in Fig. 13–9a.
 Now consider a control volume that encloses the wave front and moves 
with it, as shown in Fig. 13–9b. To an observer traveling with the wave 
front, the liquid to the right appears to be moving toward the wave front 
with speed c0 and the liquid to the left appears to be moving away from the 
wave front with speed c0 � �V. Of course the observer would think the con-
trol volume that encloses the wave front (and herself or himself) is station-
ary, and he or she would be witnessing a steady-flow process.
 The steady-flow mass balance m

.
1 � m

.
2 (or the continuity relation) for this 

control volume of width b is expressed as

 rc0  
yb 5 r(c0 2 dV)(y 1 dy)b  S  dV 5 c0 

dy

y 1 dy
 (13–11)

We make the following approximations: (1) the velocity is nearly constant 
across the channel and thus the momentum flux correction factors (�1 and 
�2) are one, (2) the distance across the wave is short and thus friction at the 
bottom surface and air drag at the top are negligible, (3) the dynamic effects 
are negligible and thus the pressure in the liquid varies hydrostatically; in 
terms of gage pressure, P1, avg � �gh1, avg � �g(y/2) and P2, avg � �gh2, avg �
�g(y � �y)/2, (4) the mass flow rate is constant with m

.
1 � m

.
2 � �c0yb, 

and (5) there are no external forces or body forces and thus the only forces 
acting on the control volume in the horizontal x-direction are the pressure

forces. Then, the momentum equation aF
!
5a

out
bm# V

!
2a

in
bm# V

!
 in the 

x-direction becomes a balance between hydrostatic pressure forces and 
momentum transfer,

 P2, avg A2 2P1, avg A1 5m# (2V2) 2m# (2V1) (13–12)

y

c0

�y

�V

y
c0c0��V

�y

�gy�g(y � �y) (1)(2)

FIGURE 13–9
The generation and analysis of a wave 

in an open channel.
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 (13-11)

我們做以下的近似：(1) 速度在跨過渠道方向幾乎是常數，因此動量通量修正因

子 (b1 與 b2) 為 1；(2) 跨過波的距離很短，因此底面的摩擦力與頂面的空氣阻

圖 13-8　用臨界深度來定義的次臨
界流與超臨界流。
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 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma � 1, sonic for Ma � 1, and supersonic for 
Ma � 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr � V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma � V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by �A, where � is density and A is a represen-
tative area, which gives

Fr2 5
V 

2

gL c

rA

rA
5

2(1
2rV 2A)

mg
r

Inertia force

Gravity force
(13–8)

Here LcA represents volume, �LcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2�V 2A, which can be 
thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr � 1), a small disturbance trav-
els upstream (with a velocity c0 � V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr � 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V � c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr � 1, is swept 
downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V

#
5AcV 5Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

(13–9)

For a rectangular channel of width b we have Ac � byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a
V
#

  

2

gb2b
1/3

 (13–10)

The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).

Ma � V/c Fr � V/c0

Ma � 1 Fr � 1 
Ma � 1 Fr � 1 
Ma � 1 Fr � 1 

V �
c � �kRT �

c0 � �gy �

FIGURE 13–7
Analogy between the Mach number 
for compressible flow and the Froude 
number for open-channel flow.

yc

y

FIGURE 13–8
Definitions of subcritical flow and 
supercritical flow in terms of critical 
depth.
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次臨界流：y>yc

超臨界流：y<yc

圖 13-9　在一個明渠中，一個波的
產生與分析。
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 As in compressible flow, a liquid can accelerate from subcritical to 
supercritical flow. Of course, it can also decelerate from supercritical to 
subcritical flow, and it can do so by undergoing a shock. The shock in 
this case is called a hydraulic jump, which corresponds to a normal shock 
in compressible flow. Therefore, the analogy between open-channel flow and 
compressible flow is remarkable.

Speed of Surface Waves
We are all familiar with the waves forming on the free surfaces of oceans, 
lakes, rivers, and even swimming pools. The surface waves can be very 
high, like the ones we see on the oceans, or barely noticeable. Some are 
smooth; some break on the surface. A basic understanding of wave motion 
is necessary for the study of certain aspects of open-channel flow, and here 
we present a brief description. A detailed treatment of wave motion can be 
found in numerous books written on the subject.
 An important parameter in the study of open-channel flow is the wave 
speed c0, which is the speed at which a surface disturbance travels through 
a liquid. Consider a long, wide channel that initially contains a still liquid 
of height y. One end of the channel is moved with speed �V, generating a 
surface wave of height �y propagating at a speed of c0 into the still liquid, as 
shown in Fig. 13–9a.
 Now consider a control volume that encloses the wave front and moves 
with it, as shown in Fig. 13–9b. To an observer traveling with the wave 
front, the liquid to the right appears to be moving toward the wave front 
with speed c0 and the liquid to the left appears to be moving away from the 
wave front with speed c0 � �V. Of course the observer would think the con-
trol volume that encloses the wave front (and herself or himself) is station-
ary, and he or she would be witnessing a steady-flow process.
 The steady-flow mass balance m

.
1 � m

.
2 (or the continuity relation) for this 

control volume of width b is expressed as

 rc0  
yb 5 r(c0 2 dV)(y 1 dy)b  S  dV 5 c0 

dy

y 1 dy
 (13–11)

We make the following approximations: (1) the velocity is nearly constant 
across the channel and thus the momentum flux correction factors (�1 and 
�2) are one, (2) the distance across the wave is short and thus friction at the 
bottom surface and air drag at the top are negligible, (3) the dynamic effects 
are negligible and thus the pressure in the liquid varies hydrostatically; in 
terms of gage pressure, P1, avg � �gh1, avg � �g(y/2) and P2, avg � �gh2, avg �
�g(y � �y)/2, (4) the mass flow rate is constant with m

.
1 � m

.
2 � �c0yb, 

and (5) there are no external forces or body forces and thus the only forces 
acting on the control volume in the horizontal x-direction are the pressure

forces. Then, the momentum equation aF
!
5a

out
bm# V

!
2a

in
bm# V

!
 in the 

x-direction becomes a balance between hydrostatic pressure forces and 
momentum transfer,

 P2, avg A2 2P1, avg A1 5m# (2V2) 2m# (2V1) (13–12)

y

c0

�y

�V

y
c0c0��V

�y

�gy�g(y � �y) (1)(2)

FIGURE 13–9
The generation and analysis of a wave 

in an open channel.
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(b) 相對於與波一起移動的觀察者的控制體
積，上面顯示的是錶壓力的分佈。

(a) 一個波的產生與傳播

變動的板

平靜的
液體

變動的
波前

控制體積



8 流 體 力 學

力都是可忽略的；(3) 動力效應可以忽略，因此液體中的壓力是靜水力分佈的， 

P1, avg =rgh1, avg =rg(y/2) 與 P2, avg = rgh2, avg = rg(y+dy)/2；(4) 質量流率是常數，即 

 ⋅m1 = ⋅m2 =rc0yb；與 (5) 沒有外力或物體力，因此作用在控制體積的水平 x- 方向的

唯一力量是壓力。動量方程式 
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 As in compressible flow, a liquid can accelerate from subcritical to 
supercritical flow. Of course, it can also decelerate from supercritical to 
subcritical flow, and it can do so by undergoing a shock. The shock in 
this case is called a hydraulic jump, which corresponds to a normal shock 
in compressible flow. Therefore, the analogy between open-channel flow and 
compressible flow is remarkable.

Speed of Surface Waves
We are all familiar with the waves forming on the free surfaces of oceans, 
lakes, rivers, and even swimming pools. The surface waves can be very 
high, like the ones we see on the oceans, or barely noticeable. Some are 
smooth; some break on the surface. A basic understanding of wave motion 
is necessary for the study of certain aspects of open-channel flow, and here 
we present a brief description. A detailed treatment of wave motion can be 
found in numerous books written on the subject.
 An important parameter in the study of open-channel flow is the wave 
speed c0, which is the speed at which a surface disturbance travels through 
a liquid. Consider a long, wide channel that initially contains a still liquid 
of height y. One end of the channel is moved with speed �V, generating a 
surface wave of height �y propagating at a speed of c0 into the still liquid, as 
shown in Fig. 13–9a.
 Now consider a control volume that encloses the wave front and moves 
with it, as shown in Fig. 13–9b. To an observer traveling with the wave 
front, the liquid to the right appears to be moving toward the wave front 
with speed c0 and the liquid to the left appears to be moving away from the 
wave front with speed c0 � �V. Of course the observer would think the con-
trol volume that encloses the wave front (and herself or himself) is station-
ary, and he or she would be witnessing a steady-flow process.
 The steady-flow mass balance m

.
1 � m

.
2 (or the continuity relation) for this 

control volume of width b is expressed as

 rc0  
yb 5 r(c0 2 dV)(y 1 dy)b  S  dV 5 c0 

dy

y 1 dy
 (13–11)

We make the following approximations: (1) the velocity is nearly constant 
across the channel and thus the momentum flux correction factors (�1 and 
�2) are one, (2) the distance across the wave is short and thus friction at the 
bottom surface and air drag at the top are negligible, (3) the dynamic effects 
are negligible and thus the pressure in the liquid varies hydrostatically; in 
terms of gage pressure, P1, avg � �gh1, avg � �g(y/2) and P2, avg � �gh2, avg �
�g(y � �y)/2, (4) the mass flow rate is constant with m

.
1 � m

.
2 � �c0yb, 

and (5) there are no external forces or body forces and thus the only forces 
acting on the control volume in the horizontal x-direction are the pressure

forces. Then, the momentum equation aF
!
5a

out
bm
#
V
!
2a

in
bm
#
V
!
 in the 

x-direction becomes a balance between hydrostatic pressure forces and 
momentum transfer,

 P2, avg A2 2P1, avg A1 5m# (2V2) 2m# (2V1) (13–12)

y

c0

�y

�V

y
c0c0��V

�y

�gy�g(y � �y) (1)(2)

FIGURE 13–9
The generation and analysis of a wave 

in an open channel.
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 在 x- 方向變成靜水壓力

與動量傳遞之間的平衡，
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 As in compressible flow, a liquid can accelerate from subcritical to 
supercritical flow. Of course, it can also decelerate from supercritical to 
subcritical flow, and it can do so by undergoing a shock. The shock in 
this case is called a hydraulic jump, which corresponds to a normal shock 
in compressible flow. Therefore, the analogy between open-channel flow and 
compressible flow is remarkable.

Speed of Surface Waves
We are all familiar with the waves forming on the free surfaces of oceans, 
lakes, rivers, and even swimming pools. The surface waves can be very 
high, like the ones we see on the oceans, or barely noticeable. Some are 
smooth; some break on the surface. A basic understanding of wave motion 
is necessary for the study of certain aspects of open-channel flow, and here 
we present a brief description. A detailed treatment of wave motion can be 
found in numerous books written on the subject.
 An important parameter in the study of open-channel flow is the wave 
speed c0, which is the speed at which a surface disturbance travels through 
a liquid. Consider a long, wide channel that initially contains a still liquid 
of height y. One end of the channel is moved with speed �V, generating a 
surface wave of height �y propagating at a speed of c0 into the still liquid, as 
shown in Fig. 13–9a.
 Now consider a control volume that encloses the wave front and moves 
with it, as shown in Fig. 13–9b. To an observer traveling with the wave 
front, the liquid to the right appears to be moving toward the wave front 
with speed c0 and the liquid to the left appears to be moving away from the 
wave front with speed c0 � �V. Of course the observer would think the con-
trol volume that encloses the wave front (and herself or himself) is station-
ary, and he or she would be witnessing a steady-flow process.
 The steady-flow mass balance m

.
1 � m

.
2 (or the continuity relation) for this 

control volume of width b is expressed as

 rc0  
yb 5 r(c0 2 dV)(y 1 dy)b  S  dV 5 c0 

dy

y 1 dy
 (13–11)

We make the following approximations: (1) the velocity is nearly constant 
across the channel and thus the momentum flux correction factors (�1 and 
�2) are one, (2) the distance across the wave is short and thus friction at the 
bottom surface and air drag at the top are negligible, (3) the dynamic effects 
are negligible and thus the pressure in the liquid varies hydrostatically; in 
terms of gage pressure, P1, avg � �gh1, avg � �g(y/2) and P2, avg � �gh2, avg �
�g(y � �y)/2, (4) the mass flow rate is constant with m

.
1 � m

.
2 � �c0yb, 

and (5) there are no external forces or body forces and thus the only forces 
acting on the control volume in the horizontal x-direction are the pressure

forces. Then, the momentum equation aF
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out
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V
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V
!
 in the 

x-direction becomes a balance between hydrostatic pressure forces and 
momentum transfer,

 P2, avg A2 2P1, avg A1 5m# (2V2) 2m# (2V1) (13–12)
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FIGURE 13–9
The generation and analysis of a wave 

in an open channel.
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注意進口與出口平均速度兩者都是負的，因為它們是在負 x- 方向。代入，
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Note that both the inlet and the outlet average velocities are negative since 
they are in the negative x-direction. Substituting,

 
rg(y 1 dy)2b

2
2
rgy2b

2
5 rc0yb(2c0 1 dV) 2 rc0yb(2c0) (13–13)

or,

 ga1 1
dy

2y
b dy 5 c0 dV  (13–14)

Combining the momentum and continuity relations and rearranging give

 c2
0 5 gya1 1

dy

y
b a1 1

dy

2y
b  (13–15)

Therefore, the wave speed c0 is proportional to the wave height �y. For 
infinitesimal surface waves, �y �� y and thus

Infinitesimal surface waves: c0 5"gy (13–16)

Therefore, the speed of infinitesimal surface waves is proportional to the 
square root of liquid depth. Again note that this analysis is valid only for 
shallow liquid bodies, such as those encountered in open channels. Other-
wise, the wave speed is independent of liquid depth for deep bodies of 
liquid, such as the oceans. The wave speed can also be determined by using 
the energy balance relation instead of the momentum equation together with 
the continuity relation. Note that the waves eventually die out because of the 
viscous effects that are neglected in the analysis. Also, for flow in channels 
of non-rectangular cross-section, the hydraulic depth defined as yh � Ac/Lt 
where Lt is the top width of the flow section should be used in the calcula-
tion of Froude number in place of the flow depth y. For a half-full circular 
channel, for example, the hydraulic depth is yh � (�R2/2)/2R � �R/4.
 We know from experience that when a rock is thrown into a lake, the con-
centric waves that form propagate evenly in all directions and vanish after 
some distance. But when the rock is thrown into a river, the upstream side 
of the wave moves upstream if the flow is tranquil or subcritical (V � c0), 
moves downstream if the flow is rapid or supercritical (V � c0), and remains 
stationary at the location where it is formed if the flow is critical (V � c0).
 You may be wondering why we pay so much attention to flow being 
subcritical or supercritical. The reason is that the character of the flow is 
strongly influenced by this phenomenon. For example, a rock at the riverbed 
may cause the water level at that location to rise or to drop, depending on 
whether the flow is subcritical or supercritical. Also, the liquid level drops 
gradually in the flow direction in subcritical flow, but a sudden rise in liquid 
level, called a hydraulic jump, may occur in supercritical flow (Fr � 1) as 
the flow decelerates to subcritical (Fr � 1) velocities.
 This phenomenon can occur downstream of a sluice gate as shown in 
Fig.  13–10. The liquid approaches the gate with a subcritical velocity, but 
the upstream liquid level is sufficiently high to accelerate the liquid to a 
supercritical level as it passes through the gate (just like a gas flowing in a 
converging–diverging nozzle). But if the downstream section of the channel 
is not sufficiently sloped down, it cannot maintain this supercritical veloc-
ity, and the liquid jumps up to a higher level with a larger cross-sectional area, 
and thus to a lower subcritical velocity. Finally, the flow in rivers, canals, and 

FIGURE 13–10
Supercritical flow through a sluice 
gate.

FIGURE 13–11
A hydraulic jump can be observed on 
a dinner plate when (a) it is right-side-
up, but not when (b) it is upside down.
Photos by Abel Po-Ya Chuang. Used by permission.

(a)

(b)
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Note that both the inlet and the outlet average velocities are negative since 
they are in the negative x-direction. Substituting,

 
rg(y 1 dy)2b

2
2
rgy2b

2
5 rc0yb(2c0 1 dV) 2 rc0yb(2c0) (13–13)

or,

 ga1 1
dy

2y
b dy 5 c0 dV  (13–14)

Combining the momentum and continuity relations and rearranging give

 c2
0 5 gya1 1

dy

y
b a1 1

dy

2y
b  (13–15)

Therefore, the wave speed c0 is proportional to the wave height �y. For 
infinitesimal surface waves, �y �� y and thus

Infinitesimal surface waves: c0 5"gy (13–16)

Therefore, the speed of infinitesimal surface waves is proportional to the 
square root of liquid depth. Again note that this analysis is valid only for 
shallow liquid bodies, such as those encountered in open channels. Other-
wise, the wave speed is independent of liquid depth for deep bodies of 
liquid, such as the oceans. The wave speed can also be determined by using 
the energy balance relation instead of the momentum equation together with 
the continuity relation. Note that the waves eventually die out because of the 
viscous effects that are neglected in the analysis. Also, for flow in channels 
of non-rectangular cross-section, the hydraulic depth defined as yh � Ac/Lt 
where Lt is the top width of the flow section should be used in the calcula-
tion of Froude number in place of the flow depth y. For a half-full circular 
channel, for example, the hydraulic depth is yh � (�R2/2)/2R � �R/4.
 We know from experience that when a rock is thrown into a lake, the con-
centric waves that form propagate evenly in all directions and vanish after 
some distance. But when the rock is thrown into a river, the upstream side 
of the wave moves upstream if the flow is tranquil or subcritical (V � c0), 
moves downstream if the flow is rapid or supercritical (V � c0), and remains 
stationary at the location where it is formed if the flow is critical (V � c0).
 You may be wondering why we pay so much attention to flow being 
subcritical or supercritical. The reason is that the character of the flow is 
strongly influenced by this phenomenon. For example, a rock at the riverbed 
may cause the water level at that location to rise or to drop, depending on 
whether the flow is subcritical or supercritical. Also, the liquid level drops 
gradually in the flow direction in subcritical flow, but a sudden rise in liquid 
level, called a hydraulic jump, may occur in supercritical flow (Fr � 1) as 
the flow decelerates to subcritical (Fr � 1) velocities.
 This phenomenon can occur downstream of a sluice gate as shown in 
Fig.  13–10. The liquid approaches the gate with a subcritical velocity, but 
the upstream liquid level is sufficiently high to accelerate the liquid to a 
supercritical level as it passes through the gate (just like a gas flowing in a 
converging–diverging nozzle). But if the downstream section of the channel 
is not sufficiently sloped down, it cannot maintain this supercritical veloc-
ity, and the liquid jumps up to a higher level with a larger cross-sectional area, 
and thus to a lower subcritical velocity. Finally, the flow in rivers, canals, and 

FIGURE 13–10
Supercritical flow through a sluice 
gate.

FIGURE 13–11
A hydraulic jump can be observed on 
a dinner plate when (a) it is right-side-
up, but not when (b) it is upside down.
Photos by Abel Po-Ya Chuang. Used by permission.

(a)

(b)
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結合動量和連續關係式，並重新整理得到
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Note that both the inlet and the outlet average velocities are negative since 
they are in the negative x-direction. Substituting,

 
rg(y 1 dy)2b

2
2
rgy2b

2
5 rc0yb(2c0 1 dV) 2 rc0yb(2c0) (13–13)

or,

 ga1 1
dy

2y
b dy 5 c0 dV  (13–14)

Combining the momentum and continuity relations and rearranging give

 c2
0 5 gya1 1

dy

y
b a1 1

dy

2y
b  (13–15)

Therefore, the wave speed c0 is proportional to the wave height �y. For 
infinitesimal surface waves, �y �� y and thus

Infinitesimal surface waves: c0 5"gy (13–16)

Therefore, the speed of infinitesimal surface waves is proportional to the 
square root of liquid depth. Again note that this analysis is valid only for 
shallow liquid bodies, such as those encountered in open channels. Other-
wise, the wave speed is independent of liquid depth for deep bodies of 
liquid, such as the oceans. The wave speed can also be determined by using 
the energy balance relation instead of the momentum equation together with 
the continuity relation. Note that the waves eventually die out because of the 
viscous effects that are neglected in the analysis. Also, for flow in channels 
of non-rectangular cross-section, the hydraulic depth defined as yh � Ac/Lt 
where Lt is the top width of the flow section should be used in the calcula-
tion of Froude number in place of the flow depth y. For a half-full circular 
channel, for example, the hydraulic depth is yh � (�R2/2)/2R � �R/4.
 We know from experience that when a rock is thrown into a lake, the con-
centric waves that form propagate evenly in all directions and vanish after 
some distance. But when the rock is thrown into a river, the upstream side 
of the wave moves upstream if the flow is tranquil or subcritical (V � c0), 
moves downstream if the flow is rapid or supercritical (V � c0), and remains 
stationary at the location where it is formed if the flow is critical (V � c0).
 You may be wondering why we pay so much attention to flow being 
subcritical or supercritical. The reason is that the character of the flow is 
strongly influenced by this phenomenon. For example, a rock at the riverbed 
may cause the water level at that location to rise or to drop, depending on 
whether the flow is subcritical or supercritical. Also, the liquid level drops 
gradually in the flow direction in subcritical flow, but a sudden rise in liquid 
level, called a hydraulic jump, may occur in supercritical flow (Fr � 1) as 
the flow decelerates to subcritical (Fr � 1) velocities.
 This phenomenon can occur downstream of a sluice gate as shown in 
Fig.  13–10. The liquid approaches the gate with a subcritical velocity, but 
the upstream liquid level is sufficiently high to accelerate the liquid to a 
supercritical level as it passes through the gate (just like a gas flowing in a 
converging–diverging nozzle). But if the downstream section of the channel 
is not sufficiently sloped down, it cannot maintain this supercritical veloc-
ity, and the liquid jumps up to a higher level with a larger cross-sectional area, 
and thus to a lower subcritical velocity. Finally, the flow in rivers, canals, and 

FIGURE 13–10
Supercritical flow through a sluice 
gate.

FIGURE 13–11
A hydraulic jump can be observed on 
a dinner plate when (a) it is right-side-
up, but not when (b) it is upside down.
Photos by Abel Po-Ya Chuang. Used by permission.

(a)

(b)

725-786_cengel_ch13.indd   732 7/5/13   10:37 AM

 (13-15)

因此，波速 c0 與波高度 dy 成正比。對於無限小的表面波，dy<<y，因此

無限小的表面波： 
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Note that both the inlet and the outlet average velocities are negative since 
they are in the negative x-direction. Substituting,

 
rg(y 1 dy)2b

2
2
rgy2b

2
5 rc0yb(2c0 1 dV) 2 rc0yb(2c0) (13–13)

or,

 ga1 1
dy

2y
b dy 5 c0 dV  (13–14)

Combining the momentum and continuity relations and rearranging give

 c2
0 5 gya1 1

dy

y
b a1 1

dy

2y
b  (13–15)

Therefore, the wave speed c0 is proportional to the wave height �y. For 
infinitesimal surface waves, �y �� y and thus

Infinitesimal surface waves: c0 5"gy (13–16)

Therefore, the speed of infinitesimal surface waves is proportional to the 
square root of liquid depth. Again note that this analysis is valid only for 
shallow liquid bodies, such as those encountered in open channels. Other-
wise, the wave speed is independent of liquid depth for deep bodies of 
liquid, such as the oceans. The wave speed can also be determined by using 
the energy balance relation instead of the momentum equation together with 
the continuity relation. Note that the waves eventually die out because of the 
viscous effects that are neglected in the analysis. Also, for flow in channels 
of non-rectangular cross-section, the hydraulic depth defined as yh � Ac/Lt 
where Lt is the top width of the flow section should be used in the calcula-
tion of Froude number in place of the flow depth y. For a half-full circular 
channel, for example, the hydraulic depth is yh � (�R2/2)/2R � �R/4.
 We know from experience that when a rock is thrown into a lake, the con-
centric waves that form propagate evenly in all directions and vanish after 
some distance. But when the rock is thrown into a river, the upstream side 
of the wave moves upstream if the flow is tranquil or subcritical (V � c0), 
moves downstream if the flow is rapid or supercritical (V � c0), and remains 
stationary at the location where it is formed if the flow is critical (V � c0).
 You may be wondering why we pay so much attention to flow being 
subcritical or supercritical. The reason is that the character of the flow is 
strongly influenced by this phenomenon. For example, a rock at the riverbed 
may cause the water level at that location to rise or to drop, depending on 
whether the flow is subcritical or supercritical. Also, the liquid level drops 
gradually in the flow direction in subcritical flow, but a sudden rise in liquid 
level, called a hydraulic jump, may occur in supercritical flow (Fr � 1) as 
the flow decelerates to subcritical (Fr � 1) velocities.
 This phenomenon can occur downstream of a sluice gate as shown in 
Fig.  13–10. The liquid approaches the gate with a subcritical velocity, but 
the upstream liquid level is sufficiently high to accelerate the liquid to a 
supercritical level as it passes through the gate (just like a gas flowing in a 
converging–diverging nozzle). But if the downstream section of the channel 
is not sufficiently sloped down, it cannot maintain this supercritical veloc-
ity, and the liquid jumps up to a higher level with a larger cross-sectional area, 
and thus to a lower subcritical velocity. Finally, the flow in rivers, canals, and 

FIGURE 13–10
Supercritical flow through a sluice 
gate.

FIGURE 13–11
A hydraulic jump can be observed on 
a dinner plate when (a) it is right-side-
up, but not when (b) it is upside down.
Photos by Abel Po-Ya Chuang. Used by permission.

(a)

(b)
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 (13-16)

因此，無限小的表面波的速度正比於液體深度的平方根。再一次注意這個分析只對

淺液體物體有效，例如在明渠中遭遇到的；否則，深液體物體的波速與深度是無關

的，例如海洋。波速也可以用能量平衡關係式來決定以代替用動量方程式與連續方

程式的結合。注意波最後會因為黏性效應而消失，這在分析中是被忽略的。同時，

對於在非矩形截面的渠道中的流動，水力深度 (hydraulic depth) (定義為 yh =Ac/Lt，其

中 Lt 是流動段的上部寬度) 應該代替流動深度被使用在福勞數的計算中。例如，對

一個半滿的圓形渠道，水力深度為 yh = (pR2/2)/2R=pR/4。

我們從經驗知道，當一塊石頭被丟進湖裡時，形成的同心水波向所有方向均

勻的傳播並且在一段距離後消失了。但是當石頭被丟進一條河流時，如果流動是

靜流或次臨界流 (V <c0)，波的上游側向上游移動；但如果流動是急流或超臨界流 

(V >c0) 則向下游移動；而在流動是臨界流時 (V =c0)，波在其產生的位置維持是靜

止的。
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你可能會奇怪，為什麼我們對流動是次臨界的或超臨界的

這麼關心。原因是流動的特性，強烈受到此現象影響。例如，

一塊在河床上的岩石，可能造成在那個位置的水面高度上升或

下降，視流動是次臨界的或超臨界的而定。同時，在次臨界流

中，液體的高度在流動的方向逐漸下降，但是在超臨界流中 

(Fr >1)，當流動減速至次臨流時 (Fr <1)，液體高度會有一個突

然的上升，稱為水躍。

這個現象可以在一個水閘門的下游發生，如圖 13-10 所

示。液體以次臨界速度接近水閘門，但是上游液體的高度夠

高，當其經過閘門時 (就像氣體在一個收縮–擴張噴嘴中流動一

樣)，會被加速至超臨界的水準。但如果渠道下游段的坡度向下

程度不夠，就不能夠維持這個超臨界速度，使得液體躍升至一

個較高的水位並有較大的截面積，從而得到一個較低的次臨界

速度。最後，在河流、運河與灌溉系統中的流動一般都是次臨

界的。但是經過水閘門與溢洪道的流動一般是超臨界的。

下次你洗盤子時，你可以創造一個漂亮的水躍 (圖 13-11)。

讓水龍頭的水沖擊餐盤的中央。當水向外徑向地流出去時，其

深度減小了，並且流動是超臨界的。終於，一個水躍產生了，

你可以從突然的水深增加看到這個現象。試試看吧！

13-3　比能量

考慮液體在渠道中流動，在一個截面的流動深度是 y 的位

置，平均速度是 V，而渠道底部相對於某個基準參考平面是 z。

為簡單起見，我們忽略液體速度在截面上的變化，並假設每個

地方的速度都是 V。渠道中這個液體的總機械能可以用水頭表

示為 (圖 13-12)

 

733
CHAPTER 13

irrigation systems is typically subcritical. But the flow past sluice gates and 
spillways is typically supercritical.
 You can create a beautiful hydraulic jump the next time you wash dishes 
(Fig. 13–11). Let the water from the faucet hit the middle of a dinner plate. As 
the water spreads out radially, its depth decreases and the flow is supercritical. 
Eventually, a hydraulic jump occurs, which you can see as a sudden increase 
in water depth. Try it!

13–3 ■  SPECIFIC ENERGY
Consider the flow of a liquid in a channel at a cross section where the flow 
depth is y, the average flow velocity is V, and the elevation of the bottom 
of the channel at that location relative to some reference datum is z. For 
simplicity, we ignore the variation of liquid speed over the cross section and 
assume the speed to be V everywhere. The total mechanical energy of this 
liquid in the channel in terms of heads is expressed as (Fig. 13–12)

 H 5 z 1
P
rg
1

V 
2

2g
5 z 1 y 1

V 
2

2g
 (13–17)

where z is the elevation head, P/�g � y is the gage pressure head, and V2/2g 
is the velocity or dynamic head. The total energy as expressed in Eq. 13–17 
is not a realistic representation of the true energy of a flowing fluid since 
the choice of the reference datum and thus the value of the elevation head z 
is rather arbitrary. The intrinsic energy of a fluid at a cross section is repre-
sented more realistically if the reference datum is taken to be the bottom of 
the channel so that z � 0 there. Then the total mechanical energy of a fluid 
in terms of heads becomes the sum of the pressure and dynamic heads. The 
sum of the pressure and dynamic heads of a liquid in an open channel is 
called the specific energy Es and is expressed as (Bakhmeteff, 1932)

 Es 5y 1
V 

2

2g
 (13–18)

as shown in Fig. 13–12.
 Consider flow in an open channel of rectangular cross section and of 
constant width b. Noting that the volume flow rate is V

#
 � AcV � ybV, the 

average flow velocity is

 V 5
V
#

yb
 (13–19)

Substituting into Eq. 13–18, the specific energy becomes

 Es 5y 1
V
#

 
2

2gb2y2 (13–20)

This equation is very instructive as it shows the variation of the specific 
energy with flow depth. During steady flow in an open channel the flow 
rate is constant, and a plot of Es versus y for constant V

#
 and b is given in 

Fig. 13–13. We observe the following from this figure:

• The distance from a point on the vertical y-axis to the curve represents the 
specific energy at that y-value. The part between the Es � y line and the 
curve corresponds to dynamic head (or kinetic energy head) of the liquid, 
and the remaining part to pressure head (or potential energy head).

z

y
Es

V2

2g

FIGURE 13–12
The specific energy Es of a liquid in an 

open channel is the total mechanical 
energy (expressed as a head) relative 

to the bottom of the channel.

y

EsEs, min

Es � y

Fr � 1

yc

y

V2

2g

.
V �

FIGURE 13–13
Variation of specific energy Es with 

depth y for a specified flow rate.
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 (13-17)

其中 z 是高度水頭，P/rg =y 是錶壓水頭，而 V2/2g 是速度或動力水頭。總能量如

式 (13-17) 所表示的並不是一個流動流體的真實能量的一個寫實的表示，因參考基

準面的選擇，從而使得高度水頭的值是相當隨意的。如果渠道的底面被取為參考基

準面使那裡成為 z =0 的位置，流體在一個截面的內在能量可以更真實地被表示，

那麼流體的總機械能用水頭表示變成是壓力水頭與動力水頭的總和。一個明渠中的

圖 13-11　當 (a) 餐盤正面向上時，
可以在餐盤上看到一個水躍，但是

當 (b) 餐盤正面向下時則不能看到。
Photos by Abel Po-Ya Chuang. Used 
by permission.
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Note that both the inlet and the outlet average velocities are negative since 
they are in the negative x-direction. Substituting,

 
rg(y 1 dy)2b

2
2
rgy2b

2
5 rc0yb(2c0 1 dV) 2 rc0yb(2c0) (13–13)

or,

 ga1 1
dy

2y
b dy 5 c0 dV  (13–14)

Combining the momentum and continuity relations and rearranging give

 c2
0 5 gya1 1

dy

y
b a1 1

dy

2y
b  (13–15)

Therefore, the wave speed c0 is proportional to the wave height �y. For 
infinitesimal surface waves, �y �� y and thus

Infinitesimal surface waves: c0 5"gy (13–16)

Therefore, the speed of infinitesimal surface waves is proportional to the 
square root of liquid depth. Again note that this analysis is valid only for 
shallow liquid bodies, such as those encountered in open channels. Other-
wise, the wave speed is independent of liquid depth for deep bodies of 
liquid, such as the oceans. The wave speed can also be determined by using 
the energy balance relation instead of the momentum equation together with 
the continuity relation. Note that the waves eventually die out because of the 
viscous effects that are neglected in the analysis. Also, for flow in channels 
of non-rectangular cross-section, the hydraulic depth defined as yh � Ac/Lt 
where Lt is the top width of the flow section should be used in the calcula-
tion of Froude number in place of the flow depth y. For a half-full circular 
channel, for example, the hydraulic depth is yh � (�R2/2)/2R � �R/4.
 We know from experience that when a rock is thrown into a lake, the con-
centric waves that form propagate evenly in all directions and vanish after 
some distance. But when the rock is thrown into a river, the upstream side 
of the wave moves upstream if the flow is tranquil or subcritical (V � c0), 
moves downstream if the flow is rapid or supercritical (V � c0), and remains 
stationary at the location where it is formed if the flow is critical (V � c0).
 You may be wondering why we pay so much attention to flow being 
subcritical or supercritical. The reason is that the character of the flow is 
strongly influenced by this phenomenon. For example, a rock at the riverbed 
may cause the water level at that location to rise or to drop, depending on 
whether the flow is subcritical or supercritical. Also, the liquid level drops 
gradually in the flow direction in subcritical flow, but a sudden rise in liquid 
level, called a hydraulic jump, may occur in supercritical flow (Fr � 1) as 
the flow decelerates to subcritical (Fr � 1) velocities.
 This phenomenon can occur downstream of a sluice gate as shown in 
Fig.  13–10. The liquid approaches the gate with a subcritical velocity, but 
the upstream liquid level is sufficiently high to accelerate the liquid to a 
supercritical level as it passes through the gate (just like a gas flowing in a 
converging–diverging nozzle). But if the downstream section of the channel 
is not sufficiently sloped down, it cannot maintain this supercritical veloc-
ity, and the liquid jumps up to a higher level with a larger cross-sectional area, 
and thus to a lower subcritical velocity. Finally, the flow in rivers, canals, and 

FIGURE 13–10
Supercritical flow through a sluice 
gate.

FIGURE 13–11
A hydraulic jump can be observed on 
a dinner plate when (a) it is right-side-
up, but not when (b) it is upside down.
Photos by Abel Po-Ya Chuang. Used by permission.

(a)

(b)

725-786_cengel_ch13.indd   732 7/5/13   10:37 AM

圖 13-10　經過一個水閘門的超臨界
流動。
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Note that both the inlet and the outlet average velocities are negative since 
they are in the negative x-direction. Substituting,

 
rg(y 1 dy)2b

2
2
rgy2b

2
5 rc0yb(2c0 1 dV) 2 rc0yb(2c0) (13–13)

or,

 ga1 1
dy

2y
b dy 5 c0 dV  (13–14)

Combining the momentum and continuity relations and rearranging give

 c2
0 5 gya1 1

dy

y
b a1 1

dy

2y
b  (13–15)

Therefore, the wave speed c0 is proportional to the wave height �y. For 
infinitesimal surface waves, �y �� y and thus

Infinitesimal surface waves: c0 5"gy (13–16)

Therefore, the speed of infinitesimal surface waves is proportional to the 
square root of liquid depth. Again note that this analysis is valid only for 
shallow liquid bodies, such as those encountered in open channels. Other-
wise, the wave speed is independent of liquid depth for deep bodies of 
liquid, such as the oceans. The wave speed can also be determined by using 
the energy balance relation instead of the momentum equation together with 
the continuity relation. Note that the waves eventually die out because of the 
viscous effects that are neglected in the analysis. Also, for flow in channels 
of non-rectangular cross-section, the hydraulic depth defined as yh � Ac/Lt 
where Lt is the top width of the flow section should be used in the calcula-
tion of Froude number in place of the flow depth y. For a half-full circular 
channel, for example, the hydraulic depth is yh � (�R2/2)/2R � �R/4.
 We know from experience that when a rock is thrown into a lake, the con-
centric waves that form propagate evenly in all directions and vanish after 
some distance. But when the rock is thrown into a river, the upstream side 
of the wave moves upstream if the flow is tranquil or subcritical (V � c0), 
moves downstream if the flow is rapid or supercritical (V � c0), and remains 
stationary at the location where it is formed if the flow is critical (V � c0).
 You may be wondering why we pay so much attention to flow being 
subcritical or supercritical. The reason is that the character of the flow is 
strongly influenced by this phenomenon. For example, a rock at the riverbed 
may cause the water level at that location to rise or to drop, depending on 
whether the flow is subcritical or supercritical. Also, the liquid level drops 
gradually in the flow direction in subcritical flow, but a sudden rise in liquid 
level, called a hydraulic jump, may occur in supercritical flow (Fr � 1) as 
the flow decelerates to subcritical (Fr � 1) velocities.
 This phenomenon can occur downstream of a sluice gate as shown in 
Fig.  13–10. The liquid approaches the gate with a subcritical velocity, but 
the upstream liquid level is sufficiently high to accelerate the liquid to a 
supercritical level as it passes through the gate (just like a gas flowing in a 
converging–diverging nozzle). But if the downstream section of the channel 
is not sufficiently sloped down, it cannot maintain this supercritical veloc-
ity, and the liquid jumps up to a higher level with a larger cross-sectional area, 
and thus to a lower subcritical velocity. Finally, the flow in rivers, canals, and 

FIGURE 13–10
Supercritical flow through a sluice 
gate.

FIGURE 13–11
A hydraulic jump can be observed on 
a dinner plate when (a) it is right-side-
up, but not when (b) it is upside down.
Photos by Abel Po-Ya Chuang. Used by permission.

(a)

(b)
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水躍



10 流 體 力 學

流體的壓力與動力水頭的總和稱為比能量 (specific energy) Es，

並且被表示為 (Bakhmeteff, 1932)
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irrigation systems is typically subcritical. But the flow past sluice gates and 
spillways is typically supercritical.
 You can create a beautiful hydraulic jump the next time you wash dishes 
(Fig. 13–11). Let the water from the faucet hit the middle of a dinner plate. As 
the water spreads out radially, its depth decreases and the flow is supercritical. 
Eventually, a hydraulic jump occurs, which you can see as a sudden increase 
in water depth. Try it!

13–3 ■  SPECIFIC ENERGY
Consider the flow of a liquid in a channel at a cross section where the flow 
depth is y, the average flow velocity is V, and the elevation of the bottom 
of the channel at that location relative to some reference datum is z. For 
simplicity, we ignore the variation of liquid speed over the cross section and 
assume the speed to be V everywhere. The total mechanical energy of this 
liquid in the channel in terms of heads is expressed as (Fig. 13–12)

 H 5 z 1
P
rg
1

V 
2

2g
5 z 1 y 1

V 
2

2g
 (13–17)

where z is the elevation head, P/�g � y is the gage pressure head, and V2/2g 
is the velocity or dynamic head. The total energy as expressed in Eq. 13–17 
is not a realistic representation of the true energy of a flowing fluid since 
the choice of the reference datum and thus the value of the elevation head z 
is rather arbitrary. The intrinsic energy of a fluid at a cross section is repre-
sented more realistically if the reference datum is taken to be the bottom of 
the channel so that z � 0 there. Then the total mechanical energy of a fluid 
in terms of heads becomes the sum of the pressure and dynamic heads. The 
sum of the pressure and dynamic heads of a liquid in an open channel is 
called the specific energy Es and is expressed as (Bakhmeteff, 1932)

 Es 5y 1
V 

2

2g
 (13–18)

as shown in Fig. 13–12.
 Consider flow in an open channel of rectangular cross section and of 
constant width b. Noting that the volume flow rate is V

#
 � AcV � ybV, the 

average flow velocity is

 V 5
V
#

yb
 (13–19)

Substituting into Eq. 13–18, the specific energy becomes

 Es 5y 1
V
#

 
2

2gb2y2 (13–20)

This equation is very instructive as it shows the variation of the specific 
energy with flow depth. During steady flow in an open channel the flow 
rate is constant, and a plot of Es versus y for constant V

#
 and b is given in 

Fig. 13–13. We observe the following from this figure:

• The distance from a point on the vertical y-axis to the curve represents the 
specific energy at that y-value. The part between the Es � y line and the 
curve corresponds to dynamic head (or kinetic energy head) of the liquid, 
and the remaining part to pressure head (or potential energy head).

z

y
Es

V2

2g

FIGURE 13–12
The specific energy Es of a liquid in an 

open channel is the total mechanical 
energy (expressed as a head) relative 

to the bottom of the channel.

y

EsEs, min

Es � y

Fr � 1

yc

y

V2

2g

.
V �

FIGURE 13–13
Variation of specific energy Es with 

depth y for a specified flow rate.
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 (13-18)

如圖 13-12 所示。

考慮在一個矩形截面的明渠中的流動，其寬度 b 為常數。

體積流率是 
⋅
V =AcV=ybV，平均流速是
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irrigation systems is typically subcritical. But the flow past sluice gates and 
spillways is typically supercritical.
 You can create a beautiful hydraulic jump the next time you wash dishes 
(Fig. 13–11). Let the water from the faucet hit the middle of a dinner plate. As 
the water spreads out radially, its depth decreases and the flow is supercritical. 
Eventually, a hydraulic jump occurs, which you can see as a sudden increase 
in water depth. Try it!

13–3 ■  SPECIFIC ENERGY
Consider the flow of a liquid in a channel at a cross section where the flow 
depth is y, the average flow velocity is V, and the elevation of the bottom 
of the channel at that location relative to some reference datum is z. For 
simplicity, we ignore the variation of liquid speed over the cross section and 
assume the speed to be V everywhere. The total mechanical energy of this 
liquid in the channel in terms of heads is expressed as (Fig. 13–12)

 H 5 z 1
P
rg
1

V 
2

2g
5 z 1 y 1

V 
2

2g
 (13–17)

where z is the elevation head, P/�g � y is the gage pressure head, and V2/2g 
is the velocity or dynamic head. The total energy as expressed in Eq. 13–17 
is not a realistic representation of the true energy of a flowing fluid since 
the choice of the reference datum and thus the value of the elevation head z 
is rather arbitrary. The intrinsic energy of a fluid at a cross section is repre-
sented more realistically if the reference datum is taken to be the bottom of 
the channel so that z � 0 there. Then the total mechanical energy of a fluid 
in terms of heads becomes the sum of the pressure and dynamic heads. The 
sum of the pressure and dynamic heads of a liquid in an open channel is 
called the specific energy Es and is expressed as (Bakhmeteff, 1932)

 Es 5y 1
V 

2

2g
 (13–18)

as shown in Fig. 13–12.
 Consider flow in an open channel of rectangular cross section and of 
constant width b. Noting that the volume flow rate is V

#
 � AcV � ybV, the 

average flow velocity is

 V 5
V
#

yb
 (13–19)

Substituting into Eq. 13–18, the specific energy becomes

 Es 5y 1
V
#

 
2

2gb2y2 (13–20)

This equation is very instructive as it shows the variation of the specific 
energy with flow depth. During steady flow in an open channel the flow 
rate is constant, and a plot of Es versus y for constant V

#
 and b is given in 

Fig. 13–13. We observe the following from this figure:

• The distance from a point on the vertical y-axis to the curve represents the 
specific energy at that y-value. The part between the Es � y line and the 
curve corresponds to dynamic head (or kinetic energy head) of the liquid, 
and the remaining part to pressure head (or potential energy head).
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Es
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2g

FIGURE 13–12
The specific energy Es of a liquid in an 

open channel is the total mechanical 
energy (expressed as a head) relative 

to the bottom of the channel.
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FIGURE 13–13
Variation of specific energy Es with 

depth y for a specified flow rate.
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 (13-19)

代入式 (13-18)，比能量變成
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irrigation systems is typically subcritical. But the flow past sluice gates and 
spillways is typically supercritical.
 You can create a beautiful hydraulic jump the next time you wash dishes 
(Fig. 13–11). Let the water from the faucet hit the middle of a dinner plate. As 
the water spreads out radially, its depth decreases and the flow is supercritical. 
Eventually, a hydraulic jump occurs, which you can see as a sudden increase 
in water depth. Try it!

13–3 ■  SPECIFIC ENERGY
Consider the flow of a liquid in a channel at a cross section where the flow 
depth is y, the average flow velocity is V, and the elevation of the bottom 
of the channel at that location relative to some reference datum is z. For 
simplicity, we ignore the variation of liquid speed over the cross section and 
assume the speed to be V everywhere. The total mechanical energy of this 
liquid in the channel in terms of heads is expressed as (Fig. 13–12)

 H 5 z 1
P
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5 z 1 y 1
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2g
 (13–17)

where z is the elevation head, P/�g � y is the gage pressure head, and V2/2g 
is the velocity or dynamic head. The total energy as expressed in Eq. 13–17 
is not a realistic representation of the true energy of a flowing fluid since 
the choice of the reference datum and thus the value of the elevation head z 
is rather arbitrary. The intrinsic energy of a fluid at a cross section is repre-
sented more realistically if the reference datum is taken to be the bottom of 
the channel so that z � 0 there. Then the total mechanical energy of a fluid 
in terms of heads becomes the sum of the pressure and dynamic heads. The 
sum of the pressure and dynamic heads of a liquid in an open channel is 
called the specific energy Es and is expressed as (Bakhmeteff, 1932)

 Es 5y 1
V 

2

2g
 (13–18)

as shown in Fig. 13–12.
 Consider flow in an open channel of rectangular cross section and of 
constant width b. Noting that the volume flow rate is V

#
 � AcV � ybV, the 

average flow velocity is

 V 5
V
#

yb
 (13–19)

Substituting into Eq. 13–18, the specific energy becomes

 Es 5y 1
V
#

 
2

2gb2y2 (13–20)

This equation is very instructive as it shows the variation of the specific 
energy with flow depth. During steady flow in an open channel the flow 
rate is constant, and a plot of Es versus y for constant V

#
 and b is given in 

Fig. 13–13. We observe the following from this figure:

• The distance from a point on the vertical y-axis to the curve represents the 
specific energy at that y-value. The part between the Es � y line and the 
curve corresponds to dynamic head (or kinetic energy head) of the liquid, 
and the remaining part to pressure head (or potential energy head).
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FIGURE 13–12
The specific energy Es of a liquid in an 

open channel is the total mechanical 
energy (expressed as a head) relative 

to the bottom of the channel.
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depth y for a specified flow rate.
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 (13-20)

這方程式很具有教育性，因為它顯示出比能量隨流動深度的變

化。在一個明渠的穩定流中，流率是常數，且在 V 與 b 為常數

下，Es 相對於 y 的變化示於圖 13-13 中。從此圖我們觀察到以

下幾點：

• 從垂直的 y- 軸上的一點到曲線的距離代表在那個 y- 值的比能量。從 Es =y 的

線到曲線的部分對應流體的動力水頭 (或動水頭)，而剩下的部分代表壓力水頭 

(或位能水頭)。

• 當 y → 0 時，比能量趨近無限大 (由於速度趨近無限大)，而當 y- 值很大時，

比能量變成等於流動深度 (因為速度，從而是動能，變成很小)。比能量在某個

中間值達到一個最小值，稱為臨界點 (critical point)，特徵是臨界深度 (critical 

depth) yc，與臨界速度 (critical velocity) Vc。最小的比能量也稱為臨界能量 

(critical energy)。

• 有一個最小的比能量 Es, min 需要用來支撐指定的流率 
⋅
V。因此對於一個給定的 

 
⋅
V，Es 不能夠低於 Es, min。

• 一條水平線與比能量曲線僅在一點相交，因此一個固定的流動深度對應到一

個固定的比能量。這是預期的，因為當 
⋅
V、b 與 y 被指定時，速度只能有一個

固定值。然而，對於 Es >Es, min，一條垂直線與曲線相交於兩點，顯示一個

流動可以有兩個不同的深度 (因此兩個不同的速度) 對應到比能量的一個固定

圖 13-12　明渠中液體的比能量 Es 
是相對於渠道底部的總機械能 (用水
頭表示)。
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irrigation systems is typically subcritical. But the flow past sluice gates and 
spillways is typically supercritical.
 You can create a beautiful hydraulic jump the next time you wash dishes 
(Fig. 13–11). Let the water from the faucet hit the middle of a dinner plate. As 
the water spreads out radially, its depth decreases and the flow is supercritical. 
Eventually, a hydraulic jump occurs, which you can see as a sudden increase 
in water depth. Try it!

13–3 ■  SPECIFIC ENERGY
Consider the flow of a liquid in a channel at a cross section where the flow 
depth is y, the average flow velocity is V, and the elevation of the bottom 
of the channel at that location relative to some reference datum is z. For 
simplicity, we ignore the variation of liquid speed over the cross section and 
assume the speed to be V everywhere. The total mechanical energy of this 
liquid in the channel in terms of heads is expressed as (Fig. 13–12)

 H 5 z 1
P
rg
1

V 
2

2g
5 z 1 y 1

V 
2

2g
 (13–17)

where z is the elevation head, P/�g � y is the gage pressure head, and V2/2g 
is the velocity or dynamic head. The total energy as expressed in Eq. 13–17 
is not a realistic representation of the true energy of a flowing fluid since 
the choice of the reference datum and thus the value of the elevation head z 
is rather arbitrary. The intrinsic energy of a fluid at a cross section is repre-
sented more realistically if the reference datum is taken to be the bottom of 
the channel so that z � 0 there. Then the total mechanical energy of a fluid 
in terms of heads becomes the sum of the pressure and dynamic heads. The 
sum of the pressure and dynamic heads of a liquid in an open channel is 
called the specific energy Es and is expressed as (Bakhmeteff, 1932)

 Es 5y 1
V 

2

2g
 (13–18)

as shown in Fig. 13–12.
 Consider flow in an open channel of rectangular cross section and of 
constant width b. Noting that the volume flow rate is V

#
 � AcV � ybV, the 

average flow velocity is

 V 5
V
#

yb
 (13–19)

Substituting into Eq. 13–18, the specific energy becomes

 Es 5y 1
V
#

 
2

2gb2y2 (13–20)

This equation is very instructive as it shows the variation of the specific 
energy with flow depth. During steady flow in an open channel the flow 
rate is constant, and a plot of Es versus y for constant V

#
 and b is given in 

Fig. 13–13. We observe the following from this figure:

• The distance from a point on the vertical y-axis to the curve represents the 
specific energy at that y-value. The part between the Es � y line and the 
curve corresponds to dynamic head (or kinetic energy head) of the liquid, 
and the remaining part to pressure head (or potential energy head).
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FIGURE 13–12
The specific energy Es of a liquid in an 

open channel is the total mechanical 
energy (expressed as a head) relative 

to the bottom of the channel.

y
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FIGURE 13–13
Variation of specific energy Es with 

depth y for a specified flow rate.
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能量線

參考基準面

圖 13-13　在一個指定流率下，比能
量 Es 相對於深度 y 的變化。
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irrigation systems is typically subcritical. But the flow past sluice gates and 
spillways is typically supercritical.
 You can create a beautiful hydraulic jump the next time you wash dishes 
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of the channel at that location relative to some reference datum is z. For 
simplicity, we ignore the variation of liquid speed over the cross section and 
assume the speed to be V everywhere. The total mechanical energy of this 
liquid in the channel in terms of heads is expressed as (Fig. 13–12)
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where z is the elevation head, P/�g � y is the gage pressure head, and V2/2g 
is the velocity or dynamic head. The total energy as expressed in Eq. 13–17 
is not a realistic representation of the true energy of a flowing fluid since 
the choice of the reference datum and thus the value of the elevation head z 
is rather arbitrary. The intrinsic energy of a fluid at a cross section is repre-
sented more realistically if the reference datum is taken to be the bottom of 
the channel so that z � 0 there. Then the total mechanical energy of a fluid 
in terms of heads becomes the sum of the pressure and dynamic heads. The 
sum of the pressure and dynamic heads of a liquid in an open channel is 
called the specific energy Es and is expressed as (Bakhmeteff, 1932)
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 Consider flow in an open channel of rectangular cross section and of 
constant width b. Noting that the volume flow rate is V
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average flow velocity is
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Substituting into Eq. 13–18, the specific energy becomes
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This equation is very instructive as it shows the variation of the specific 
energy with flow depth. During steady flow in an open channel the flow 
rate is constant, and a plot of Es versus y for constant V

#
 and b is given in 

Fig. 13–13. We observe the following from this figure:

• The distance from a point on the vertical y-axis to the curve represents the 
specific energy at that y-value. The part between the Es � y line and the 
curve corresponds to dynamic head (or kinetic energy head) of the liquid, 
and the remaining part to pressure head (or potential energy head).
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常數

次臨界流
Fr<1

超臨界流
Fr>1臨界深度



第 13 章　明渠流 11

值。這兩個深度稱為交替深度 (alternate depths)。對於通過

一個水閘門的流動，忽略摩擦損失 (因此 Es =常數)，上面

的深度對應上游的流動，而下面的深度對應下游的流動 (圖  

13-14)。

• 靠近臨界點時，比能量的一個微小改變會造成交替深度之

間的大差異，並且可能造成流動高度的劇烈擾動。因此在

設計明渠流時，應該儘量避免靠近臨界點的操作。

發生最小比能量與臨界深度的值可以把式 (13-20) 中的 Es 

在 b 與 
⋅
V  為常數下對 y 作微分，並令微分為零來決定：
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• The specific energy tends to infinity as y → 0 (due to the velocity 
approaching infinity), and it becomes equal to flow depth y for large 
values of y (due to the velocity and thus the kinetic energy becoming 
very small). The specific energy reaches a minimum value Es, min at some 
intermediate point, called the critical point, characterized by the critical 
depth yc and critical velocity Vc. The minimum specific energy is also 
called the critical energy.

• There is a minimum specific energy Es, min required to support the specified 
flow rate V

#
. Therefore, Es cannot be below Es, min for a given V

#
.

• A horizontal line intersects the specific energy curve at one point only, 
and thus a fixed value of flow depth corresponds to a fixed value of 
specific energy. This is expected since the velocity has a fixed value 
when V

#
, b, and y are specified. However, for Es � Es, min, a vertical line 

intersects the curve at two points, indicating that a flow can have two 
different depths (and thus two different velocities) corresponding to a 
fixed value of specific energy. These two depths are called alternate 
depths. For flow through a sluice gate with negligible frictional losses 
(and thus Es � constant), the upper depth corresponds to the upstream 
flow, and the lower depth to the downstream flow (Fig. 13–14).

• A small change in specific energy near the critical point causes a large 
difference between alternate depths and may cause violent fluctuations in 
flow level. Therefore, operation near the critical point should be avoided 
in the design of open channels.

 The value of the minimum specific energy and the critical depth at which 
it occurs is determined by differentiating Es from Eq. 13–20 with respect to y 
for constant b and V

#
, and setting the derivative equal to zero:

 
dEs

dy
5

d

dy
 ay 1

V
#

2

2gb2y2b 51 2
V
#

2

gb2y3 50 (13–21)

Solving for y, which is the critical flow depth yc, gives

 yc 5 a
V
#

 
2

 gb 
2b

1/3

 (13–22)

The flow rate at the critical point can be expressed as V
#
 � ycbVc. Substitut-

ing, the critical velocity is determined to be

 Vc 5"gyc (13–23)

which is the wave speed. The Froude number at this point is

 Fr 5
V

"gy
5

Vc

"gyc

51 (13–24)

indicating that the point of minimum specific energy is indeed the critical 
point, and the flow becomes critical when the specific energy reaches its 
minimum value.
 It follows that the flow is subcritical at lower flow velocities and thus 
higher flow depths (the upper arm of the curve in Fig. 13–13), supercritical at 
higher velo cities and thus lower flow depths (the lower arm of the curve), and 
critical at the critical point (the point of minimum specific energy).

y1
V1

V2y2

FIGURE 13–14
A sluice gate illustrates alternate 
depths—the deep liquid upstream of 
the sluice gate and the shallow liquid 
downstream of the sluice gate.
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 (13-21)

解出 y，其為臨界深度 yc，得到

 

734
OPEN-CHANNEL FLOW
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intermediate point, called the critical point, characterized by the critical 
depth yc and critical velocity Vc. The minimum specific energy is also 
called the critical energy.

• There is a minimum specific energy Es, min required to support the specified 
flow rate V

#
. Therefore, Es cannot be below Es, min for a given V

#
.

• A horizontal line intersects the specific energy curve at one point only, 
and thus a fixed value of flow depth corresponds to a fixed value of 
specific energy. This is expected since the velocity has a fixed value 
when V

#
, b, and y are specified. However, for Es � Es, min, a vertical line 

intersects the curve at two points, indicating that a flow can have two 
different depths (and thus two different velocities) corresponding to a 
fixed value of specific energy. These two depths are called alternate 
depths. For flow through a sluice gate with negligible frictional losses 
(and thus Es � constant), the upper depth corresponds to the upstream 
flow, and the lower depth to the downstream flow (Fig. 13–14).

• A small change in specific energy near the critical point causes a large 
difference between alternate depths and may cause violent fluctuations in 
flow level. Therefore, operation near the critical point should be avoided 
in the design of open channels.

 The value of the minimum specific energy and the critical depth at which 
it occurs is determined by differentiating Es from Eq. 13–20 with respect to y 
for constant b and V
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, and setting the derivative equal to zero:
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Solving for y, which is the critical flow depth yc, gives
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The flow rate at the critical point can be expressed as V
#
 � ycbVc. Substitut-

ing, the critical velocity is determined to be

 Vc 5"gyc (13–23)

which is the wave speed. The Froude number at this point is

 Fr 5
V
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Vc
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indicating that the point of minimum specific energy is indeed the critical 
point, and the flow becomes critical when the specific energy reaches its 
minimum value.
 It follows that the flow is subcritical at lower flow velocities and thus 
higher flow depths (the upper arm of the curve in Fig. 13–13), supercritical at 
higher velo cities and thus lower flow depths (the lower arm of the curve), and 
critical at the critical point (the point of minimum specific energy).
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FIGURE 13–14
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depths—the deep liquid upstream of 
the sluice gate and the shallow liquid 
downstream of the sluice gate.
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 (13-22)

在臨界點的流率可以被表示為 
⋅
V =ycbVc，代入可以求得臨界速度為
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• The specific energy tends to infinity as y → 0 (due to the velocity 
approaching infinity), and it becomes equal to flow depth y for large 
values of y (due to the velocity and thus the kinetic energy becoming 
very small). The specific energy reaches a minimum value Es, min at some 
intermediate point, called the critical point, characterized by the critical 
depth yc and critical velocity Vc. The minimum specific energy is also 
called the critical energy.

• There is a minimum specific energy Es, min required to support the specified 
flow rate V

#
. Therefore, Es cannot be below Es, min for a given V

#
.

• A horizontal line intersects the specific energy curve at one point only, 
and thus a fixed value of flow depth corresponds to a fixed value of 
specific energy. This is expected since the velocity has a fixed value 
when V

#
, b, and y are specified. However, for Es � Es, min, a vertical line 

intersects the curve at two points, indicating that a flow can have two 
different depths (and thus two different velocities) corresponding to a 
fixed value of specific energy. These two depths are called alternate 
depths. For flow through a sluice gate with negligible frictional losses 
(and thus Es � constant), the upper depth corresponds to the upstream 
flow, and the lower depth to the downstream flow (Fig. 13–14).

• A small change in specific energy near the critical point causes a large 
difference between alternate depths and may cause violent fluctuations in 
flow level. Therefore, operation near the critical point should be avoided 
in the design of open channels.

 The value of the minimum specific energy and the critical depth at which 
it occurs is determined by differentiating Es from Eq. 13–20 with respect to y 
for constant b and V
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, and setting the derivative equal to zero:
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Solving for y, which is the critical flow depth yc, gives
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The flow rate at the critical point can be expressed as V
#
 � ycbVc. Substitut-

ing, the critical velocity is determined to be

 Vc 5"gyc (13–23)

which is the wave speed. The Froude number at this point is
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indicating that the point of minimum specific energy is indeed the critical 
point, and the flow becomes critical when the specific energy reaches its 
minimum value.
 It follows that the flow is subcritical at lower flow velocities and thus 
higher flow depths (the upper arm of the curve in Fig. 13–13), supercritical at 
higher velo cities and thus lower flow depths (the lower arm of the curve), and 
critical at the critical point (the point of minimum specific energy).
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FIGURE 13–14
A sluice gate illustrates alternate 
depths—the deep liquid upstream of 
the sluice gate and the shallow liquid 
downstream of the sluice gate.
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 (13-23)

此即為波速。此點的福勞數是
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and thus a fixed value of flow depth corresponds to a fixed value of 
specific energy. This is expected since the velocity has a fixed value 
when V
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different depths (and thus two different velocities) corresponding to a 
fixed value of specific energy. These two depths are called alternate 
depths. For flow through a sluice gate with negligible frictional losses 
(and thus Es � constant), the upper depth corresponds to the upstream 
flow, and the lower depth to the downstream flow (Fig. 13–14).
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difference between alternate depths and may cause violent fluctuations in 
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 The value of the minimum specific energy and the critical depth at which 
it occurs is determined by differentiating Es from Eq. 13–20 with respect to y 
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, and setting the derivative equal to zero:
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Solving for y, which is the critical flow depth yc, gives
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The flow rate at the critical point can be expressed as V
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 � ycbVc. Substitut-

ing, the critical velocity is determined to be
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which is the wave speed. The Froude number at this point is
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indicating that the point of minimum specific energy is indeed the critical 
point, and the flow becomes critical when the specific energy reaches its 
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 It follows that the flow is subcritical at lower flow velocities and thus 
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 (13-24)

指出最小比能量的點的確是臨界點，並且當比能量達到其最小值時，流動變成臨界

的。

流動在較低流速，即較高流動深度 (圖 13-13 的曲線的上臂) 時是次臨界的；在

較高流速，即較低流動深度 (曲線的下臂) 時是超臨界的；而在臨界點 (最小比能量

的點) 是臨界的。

注意 Vc = gyc，最小的 (或臨界的) 比能量可以僅用臨界深度來表示為
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 Noting that Vc 5!gyc, the minimum (or critical) specific energy can be 
expressed in terms of the critical depth alone as

 Es, min 5yc 1
V 

2
c

2g
5yc 1

gyc

2g
5

3

2
 yc (13–25)

 In uniform flow, the flow depth and the flow velocity, and thus the specific 
energy, remain constant since Es 5 y 1V 

2/2g. The head loss is made up by 
the decline in elevation (the channel is sloped downward in the flow direc-
tion). In nonuniform flow, however, the specific energy may increase or 
decrease, depending on the slope of the channel and the frictional losses. If 
the decline in elevation across a flow section is more than the head loss in 
that section, for example, the specific energy increases by an amount equal 
to the difference between elevation drop and head loss. The specific energy 
concept is a particularly useful tool when studying varied flows.

EXAMPLE 13–1    Character of Flow and Alternate Depth

Water is flowing steadily in a 0.4-m-wide rectangular open channel at a rate 
of 0.2 m3/s (Fig. 13–15). If the flow depth is 0.15 m, determine the flow 
velocity and if the flow is subcritical or supercritical. Also determine the 
alternate flow depth if the character of flow were to change.

SOLUTION  Water flow in a rectangular open channel is considered. The char-
acter of flow, the flow velocity, and the alternate depth are to be determined. 
Assumptions  The specific energy is constant.
Analysis  The average flow velocity is determined from

V 5
V
#

Ac

5
V
#

yb
5

0.2 m3/s

(0.15 m)(0.4 m)
53.33 m/s

The critical depth for this flow is

yc 5 a
V
#

 
2

 gb2b
1/3

5 a (0.2 m3/s)2

(9.81 m/s2)(0.4 m)2b
1/3

50.294 m

Therefore, the flow is supercritical since the actual flow depth is y � 0.15 m, 
and y � yc. Another way to determine the character of flow is to calculate 
the Froude number,

Fr 5
V

!gy
5

3.33 m/s

"(9.81 m/s2)(0.15 m)
52.75

Again the flow is supercritical since Fr � 1. The specific energy for the 
given conditions is

Es1 5y1 1
V
#

2

2gb2y2
1

5 (0.15 m) 1
(0.2 m3/s)2

2(9.81 m/s2)(0.4 m)2(0.15 m)2 50.7163 m

Then the alternate depth is determined from Es1 � Es2 to be

Es2 5y2 1
V
#

2

2gb2y2
2

  S  0.7163 m 5y2 1
(0.2 m3/s)2

2(9.81 m/s2)(0.4 m)2y2
2

Solving for y2 gives the alternate depth to be y2 � 0.69 m. Therefore, if the 
character of flow were to change from supercritical to subcritical while holding 
the specific energy constant, the flow depth would rise from 0.15 to 0.69 m.

0.2 m3/s

0.15 m

0.4 m

FIGURE 13–15
Schematic for Example 13–1.
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 (13-25)

在均勻流中，流動深度、流速及比能量維持為常數，因為 Es =y+V2/2g。水頭

圖 13-14　一個水閘門說明交替深
度－水閘門上游較深的液體與水

閘門下游較淺的液體。
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• The specific energy tends to infinity as y → 0 (due to the velocity 
approaching infinity), and it becomes equal to flow depth y for large 
values of y (due to the velocity and thus the kinetic energy becoming 
very small). The specific energy reaches a minimum value Es, min at some 
intermediate point, called the critical point, characterized by the critical 
depth yc and critical velocity Vc. The minimum specific energy is also 
called the critical energy.

• There is a minimum specific energy Es, min required to support the specified 
flow rate V

#
. Therefore, Es cannot be below Es, min for a given V

#
.

• A horizontal line intersects the specific energy curve at one point only, 
and thus a fixed value of flow depth corresponds to a fixed value of 
specific energy. This is expected since the velocity has a fixed value 
when V

#
, b, and y are specified. However, for Es � Es, min, a vertical line 

intersects the curve at two points, indicating that a flow can have two 
different depths (and thus two different velocities) corresponding to a 
fixed value of specific energy. These two depths are called alternate 
depths. For flow through a sluice gate with negligible frictional losses 
(and thus Es � constant), the upper depth corresponds to the upstream 
flow, and the lower depth to the downstream flow (Fig. 13–14).

• A small change in specific energy near the critical point causes a large 
difference between alternate depths and may cause violent fluctuations in 
flow level. Therefore, operation near the critical point should be avoided 
in the design of open channels.

 The value of the minimum specific energy and the critical depth at which 
it occurs is determined by differentiating Es from Eq. 13–20 with respect to y 
for constant b and V

#
, and setting the derivative equal to zero:

 
dEs

dy
5

d

dy
 ay 1

V
#

2

2gb2y2b 51 2
V
#

2

gb2y3 50 (13–21)

Solving for y, which is the critical flow depth yc, gives

 yc 5 a
V
#

 
2

 gb 
2b

1/3

 (13–22)

The flow rate at the critical point can be expressed as V
#
 � ycbVc. Substitut-

ing, the critical velocity is determined to be

 Vc 5"gyc (13–23)

which is the wave speed. The Froude number at this point is

 Fr 5
V

"gy
5

Vc

"gyc

51 (13–24)

indicating that the point of minimum specific energy is indeed the critical 
point, and the flow becomes critical when the specific energy reaches its 
minimum value.
 It follows that the flow is subcritical at lower flow velocities and thus 
higher flow depths (the upper arm of the curve in Fig. 13–13), supercritical at 
higher velo cities and thus lower flow depths (the lower arm of the curve), and 
critical at the critical point (the point of minimum specific energy).

y1
V1

V2y2

FIGURE 13–14
A sluice gate illustrates alternate 
depths—the deep liquid upstream of 
the sluice gate and the shallow liquid 
downstream of the sluice gate.
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12 流 體 力 學

損失由高度的下降彌補 (渠道在流動的方向向下傾斜)。然而，在不均勻流中，比能

量可能增加或減小，端視渠道斜率與摩擦損失而定。例如，若跨過一個流段的高度

下降大於那一段的水頭損失，比能量增加的量等於高度下降量與水頭損失的差異

量。比能量的觀念在研究變速流時是一個特別有用的工具。

 例題 13-1　　流動與交替深度的特徵

水穩定地在一個 0.4 m 寬的矩形渠道中以流率 0.2 m3/s 流動 (圖 

13-15)。如果流動深度是 0.15 m，試求流速並決定流動到底是次

臨界的或超臨界的。同時決定當流動特徵改變時的交替深度。

解答：考慮水在矩形渠道中的流動。要決定流動特徵、流速與交

替深度。

假設：比能量是常數。

解析：平均流速如下決定：
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 Noting that Vc 5!gyc, the minimum (or critical) specific energy can be 
expressed in terms of the critical depth alone as

 Es, min 5yc 1
V 

2
c

2g
5yc 1

gyc

2g
5

3

2
 yc (13–25)

 In uniform flow, the flow depth and the flow velocity, and thus the specific 
energy, remain constant since Es 5 y 1V 

2/2g. The head loss is made up by 
the decline in elevation (the channel is sloped downward in the flow direc-
tion). In nonuniform flow, however, the specific energy may increase or 
decrease, depending on the slope of the channel and the frictional losses. If 
the decline in elevation across a flow section is more than the head loss in 
that section, for example, the specific energy increases by an amount equal 
to the difference between elevation drop and head loss. The specific energy 
concept is a particularly useful tool when studying varied flows.

EXAMPLE 13–1    Character of Flow and Alternate Depth

Water is flowing steadily in a 0.4-m-wide rectangular open channel at a rate 
of 0.2 m3/s (Fig. 13–15). If the flow depth is 0.15 m, determine the flow 
velocity and if the flow is subcritical or supercritical. Also determine the 
alternate flow depth if the character of flow were to change.

SOLUTION  Water flow in a rectangular open channel is considered. The char-
acter of flow, the flow velocity, and the alternate depth are to be determined. 
Assumptions  The specific energy is constant.
Analysis  The average flow velocity is determined from

V 5
V
#

Ac

5
V
#

yb
5

0.2 m3/s

(0.15 m)(0.4 m)
53.33 m/s

The critical depth for this flow is

yc 5 a
V
#

 
2

 gb2b
1/3

5 a (0.2 m3/s)2

(9.81 m/s2)(0.4 m)2b
1/3

50.294 m

Therefore, the flow is supercritical since the actual flow depth is y � 0.15 m, 
and y � yc. Another way to determine the character of flow is to calculate 
the Froude number,

Fr 5
V

!gy
5

3.33 m/s

"(9.81 m/s2)(0.15 m)
52.75

Again the flow is supercritical since Fr � 1. The specific energy for the 
given conditions is

Es1 5y1 1
V
#

2

2gb2y2
1

5 (0.15 m) 1
(0.2 m3/s)2

2(9.81 m/s2)(0.4 m)2(0.15 m)2 50.7163 m

Then the alternate depth is determined from Es1 � Es2 to be

Es2 5y2 1
V
#

2

2gb2y2
2

  S  0.7163 m 5y2 1
(0.2 m3/s)2

2(9.81 m/s2)(0.4 m)2y2
2

Solving for y2 gives the alternate depth to be y2 � 0.69 m. Therefore, if the 
character of flow were to change from supercritical to subcritical while holding 
the specific energy constant, the flow depth would rise from 0.15 to 0.69 m.

0.2 m3/s

0.15 m

0.4 m

FIGURE 13–15
Schematic for Example 13–1.
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這個流動的臨界深度是
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 In uniform flow, the flow depth and the flow velocity, and thus the specific 
energy, remain constant since Es 5 y 1V 

2/2g. The head loss is made up by 
the decline in elevation (the channel is sloped downward in the flow direc-
tion). In nonuniform flow, however, the specific energy may increase or 
decrease, depending on the slope of the channel and the frictional losses. If 
the decline in elevation across a flow section is more than the head loss in 
that section, for example, the specific energy increases by an amount equal 
to the difference between elevation drop and head loss. The specific energy 
concept is a particularly useful tool when studying varied flows.

EXAMPLE 13–1    Character of Flow and Alternate Depth

Water is flowing steadily in a 0.4-m-wide rectangular open channel at a rate 
of 0.2 m3/s (Fig. 13–15). If the flow depth is 0.15 m, determine the flow 
velocity and if the flow is subcritical or supercritical. Also determine the 
alternate flow depth if the character of flow were to change.

SOLUTION  Water flow in a rectangular open channel is considered. The char-
acter of flow, the flow velocity, and the alternate depth are to be determined. 
Assumptions  The specific energy is constant.
Analysis  The average flow velocity is determined from
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The critical depth for this flow is
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50.294 m

Therefore, the flow is supercritical since the actual flow depth is y � 0.15 m, 
and y � yc. Another way to determine the character of flow is to calculate 
the Froude number,

Fr 5
V
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3.33 m/s

"(9.81 m/s2)(0.15 m)
52.75

Again the flow is supercritical since Fr � 1. The specific energy for the 
given conditions is
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Then the alternate depth is determined from Es1 � Es2 to be
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V
#
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  S  0.7163 m 5y2 1
(0.2 m3/s)2

2(9.81 m/s2)(0.4 m)2y2
2

Solving for y2 gives the alternate depth to be y2 � 0.69 m. Therefore, if the 
character of flow were to change from supercritical to subcritical while holding 
the specific energy constant, the flow depth would rise from 0.15 to 0.69 m.

0.2 m3/s

0.15 m

0.4 m

FIGURE 13–15
Schematic for Example 13–1.
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因此，流動是超臨界的，因為實際的流動深度是 y =0.15 m 且 y <yc。另一種決定流動特徵的方法

是計算福勞數，
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 In uniform flow, the flow depth and the flow velocity, and thus the specific 
energy, remain constant since Es 5 y 1V 

2/2g. The head loss is made up by 
the decline in elevation (the channel is sloped downward in the flow direc-
tion). In nonuniform flow, however, the specific energy may increase or 
decrease, depending on the slope of the channel and the frictional losses. If 
the decline in elevation across a flow section is more than the head loss in 
that section, for example, the specific energy increases by an amount equal 
to the difference between elevation drop and head loss. The specific energy 
concept is a particularly useful tool when studying varied flows.

EXAMPLE 13–1    Character of Flow and Alternate Depth

Water is flowing steadily in a 0.4-m-wide rectangular open channel at a rate 
of 0.2 m3/s (Fig. 13–15). If the flow depth is 0.15 m, determine the flow 
velocity and if the flow is subcritical or supercritical. Also determine the 
alternate flow depth if the character of flow were to change.

SOLUTION  Water flow in a rectangular open channel is considered. The char-
acter of flow, the flow velocity, and the alternate depth are to be determined. 
Assumptions  The specific energy is constant.
Analysis  The average flow velocity is determined from
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The critical depth for this flow is
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Therefore, the flow is supercritical since the actual flow depth is y � 0.15 m, 
and y � yc. Another way to determine the character of flow is to calculate 
the Froude number,

Fr 5
V
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"(9.81 m/s2)(0.15 m)
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Again the flow is supercritical since Fr � 1. The specific energy for the 
given conditions is
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Then the alternate depth is determined from Es1 � Es2 to be
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Solving for y2 gives the alternate depth to be y2 � 0.69 m. Therefore, if the 
character of flow were to change from supercritical to subcritical while holding 
the specific energy constant, the flow depth would rise from 0.15 to 0.69 m.

0.2 m3/s

0.15 m

0.4 m

FIGURE 13–15
Schematic for Example 13–1.
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再一次確定流動是超臨界的，因為 Fr>1。在給定條件下的比能量是
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the decline in elevation across a flow section is more than the head loss in 
that section, for example, the specific energy increases by an amount equal 
to the difference between elevation drop and head loss. The specific energy 
concept is a particularly useful tool when studying varied flows.

EXAMPLE 13–1    Character of Flow and Alternate Depth

Water is flowing steadily in a 0.4-m-wide rectangular open channel at a rate 
of 0.2 m3/s (Fig. 13–15). If the flow depth is 0.15 m, determine the flow 
velocity and if the flow is subcritical or supercritical. Also determine the 
alternate flow depth if the character of flow were to change.

SOLUTION  Water flow in a rectangular open channel is considered. The char-
acter of flow, the flow velocity, and the alternate depth are to be determined. 
Assumptions  The specific energy is constant.
Analysis  The average flow velocity is determined from
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Therefore, the flow is supercritical since the actual flow depth is y � 0.15 m, 
and y � yc. Another way to determine the character of flow is to calculate 
the Froude number,
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Again the flow is supercritical since Fr � 1. The specific energy for the 
given conditions is
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Solving for y2 gives the alternate depth to be y2 � 0.69 m. Therefore, if the 
character of flow were to change from supercritical to subcritical while holding 
the specific energy constant, the flow depth would rise from 0.15 to 0.69 m.

0.2 m3/s

0.15 m

0.4 m

FIGURE 13–15
Schematic for Example 13–1.
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然後交替深度可以從 Es1 =Es2 來決定，

735
CHAPTER 13

 Noting that Vc 5!gyc, the minimum (or critical) specific energy can be 
expressed in terms of the critical depth alone as

 Es, min 5yc 1
V 

2
c

2g
5yc 1

gyc

2g
5

3

2
 yc (13–25)

 In uniform flow, the flow depth and the flow velocity, and thus the specific 
energy, remain constant since Es 5 y 1V 

2/2g. The head loss is made up by 
the decline in elevation (the channel is sloped downward in the flow direc-
tion). In nonuniform flow, however, the specific energy may increase or 
decrease, depending on the slope of the channel and the frictional losses. If 
the decline in elevation across a flow section is more than the head loss in 
that section, for example, the specific energy increases by an amount equal 
to the difference between elevation drop and head loss. The specific energy 
concept is a particularly useful tool when studying varied flows.
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of 0.2 m3/s (Fig. 13–15). If the flow depth is 0.15 m, determine the flow 
velocity and if the flow is subcritical or supercritical. Also determine the 
alternate flow depth if the character of flow were to change.

SOLUTION  Water flow in a rectangular open channel is considered. The char-
acter of flow, the flow velocity, and the alternate depth are to be determined. 
Assumptions  The specific energy is constant.
Analysis  The average flow velocity is determined from
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and y � yc. Another way to determine the character of flow is to calculate 
the Froude number,
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Solving for y2 gives the alternate depth to be y2 � 0.69 m. Therefore, if the 
character of flow were to change from supercritical to subcritical while holding 
the specific energy constant, the flow depth would rise from 0.15 to 0.69 m.

0.2 m3/s
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FIGURE 13–15
Schematic for Example 13–1.
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解出 y2 就得到交替深度為 y2 =0.69 m。因此如果流動特徵從超臨界變成次臨界，並維持比能量為常

數時，流動深度會從 0.15 m 上升至 0.69 m。

討論：注意如果水在等比能量下經歷一個水躍 (動能損失等於位能增加)，流動深度會上升至 0.69 

m，前提是渠道邊壁要有足夠高度。

圖 13-15　例題 13-1 的示意圖。
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第 13 章　明渠流 13

13-4　質量與能量守恆方程式

明渠流牽涉到的液體，其密度幾乎是常數，因此一維穩定流的質量守恆方程式

被表示為

 

736
OPEN-CHANNEL FLOW

Discussion  Note that if the water underwent a hydraulic jump at constant 
specific energy (the frictional losses being equal to the drop in elevation), 
the flow depth would rise to 0.69 m, assuming of course that the side walls 
of the channel are high enough.

13–4 ■  CONSERVATION OF MASS 
AND ENERGY EQUATIONS

Open-channel flows involve liquids whose densities are nearly constant, 
and thus the one-dimensional steady-flow conservation of mass equation is 
ex pressed as
 V

#
5AcV 5constant (13–26)

That is, the product of the flow cross section and the average flow velocity 
remains constant throughout the channel. Equation 13–26 between two sec-
tions along the channel is expressed as

Continuity equation: Ac1V1 5Ac2V2 (13–27)

which is identical to the steady-flow conservation of mass equation for liquid 
flow in a pipe. Note that both the flow cross section and the average flow 
velocity may vary during flow, but, as stated, their product remains constant.
 To determine the total energy of a liquid flowing in an open channel rela-
tive to a reference datum, as shown in Fig. 13–16, consider a point A in the 
liquid at a distance a from the free surface (and thus a distance y � a from 
the channel bottom). Noting that the elevation, pressure (hydrostatic pressure 
relative to the free surface), and velocity at point A are zA � z � (y � a), 
PA � �ga, and VA � V, respectively, the total energy of the liquid in terms 
of heads is

 HA 5 zA 1
PA

rg
1

V 2
A

2g
5 z 1 (y 2 a) 1

rga

rg
1

V 2

2g
5 z 1 y 1

V 2

2g
 (13–28)

which is independent of the location of the point A at a cross section. There-
fore, the total mechanical energy of a liquid at any cross section of an open 
channel can be expressed in terms of heads as

 H 5 z 1 y 1
V 

2

2g
 (13–29)

where y is the flow depth, z is the elevation of the channel bottom, and V is the 
average flow velocity. Then the one-dimensional energy equation for open-
channel flow between an upstream section 1 and a downstream section 2 
is written as

Energy equation: z1 1y1 1
V 

2
1

2g
5 z2 1y2 1

V 
2
2

2g
1hL (13–30)

The head loss hL due to frictional effects is expressed as in pipe flow as

 hL 5 f 
L

Dh

 
V 2

2g
5 f 

L

Rh

 
V 

2

8g
 (13–31)

where f is the average friction factor and L is the length of channel between 
sections 1 and 2. The relation Dh � 4Rh should be observed when using the 
hydraulic radius instead of the hydraulic diameter.

z

Ay
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常數 (13-26)

也就是流動的截面積與平均流速的乘積在整個渠道中維持為常數。式 (13-26) 在沿

著流道的兩個截面間可以表示為

連續方程式： Ac1V1 =Ac2V2 (13-27)

其與管中液體穩定流的質量守恆方程式是相同的。注意流動截面積與平均流速兩者

在流動中都可能改變，但是其乘積維持為常數。

為了決定在明渠中流動的液體相對於一個參考基準面的總

能量，如圖 13-16 所示，考慮液體中與自由表面的距離是 a 的

一點 A (因此距離渠道底面的距離為 y −a)。注意在點 A 的高

度、壓力 (相對於自由表面的靜水壓) 與速度分別是 zA = z+ (y−

a)、PA =rga 與 VA =V，液體的總能量用水頭來表示是
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Discussion  Note that if the water underwent a hydraulic jump at constant 
specific energy (the frictional losses being equal to the drop in elevation), 
the flow depth would rise to 0.69 m, assuming of course that the side walls 
of the channel are high enough.

13–4 ■  CONSERVATION OF MASS 
AND ENERGY EQUATIONS

Open-channel flows involve liquids whose densities are nearly constant, 
and thus the one-dimensional steady-flow conservation of mass equation is 
ex pressed as
 V

#
5AcV 5constant (13–26)

That is, the product of the flow cross section and the average flow velocity 
remains constant throughout the channel. Equation 13–26 between two sec-
tions along the channel is expressed as

Continuity equation: Ac1V1 5Ac2V2 (13–27)

which is identical to the steady-flow conservation of mass equation for liquid 
flow in a pipe. Note that both the flow cross section and the average flow 
velocity may vary during flow, but, as stated, their product remains constant.
 To determine the total energy of a liquid flowing in an open channel rela-
tive to a reference datum, as shown in Fig. 13–16, consider a point A in the 
liquid at a distance a from the free surface (and thus a distance y � a from 
the channel bottom). Noting that the elevation, pressure (hydrostatic pressure 
relative to the free surface), and velocity at point A are zA � z � (y � a), 
PA � �ga, and VA � V, respectively, the total energy of the liquid in terms 
of heads is

 HA 5 zA 1
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rg
1

V 2
A

2g
5 z 1 (y 2 a) 1

rga

rg
1

V 2

2g
5 z 1 y 1

V 2

2g
 (13–28)

which is independent of the location of the point A at a cross section. There-
fore, the total mechanical energy of a liquid at any cross section of an open 
channel can be expressed in terms of heads as

 H 5 z 1 y 1
V 

2

2g
 (13–29)

where y is the flow depth, z is the elevation of the channel bottom, and V is the 
average flow velocity. Then the one-dimensional energy equation for open-
channel flow between an upstream section 1 and a downstream section 2 
is written as

Energy equation: z1 1y1 1
V 

2
1

2g
5 z2 1y2 1

V 
2
2

2g
1hL (13–30)

The head loss hL due to frictional effects is expressed as in pipe flow as

 hL 5 f 
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Dh

 
V 2
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2

8g
 (13–31)

where f is the average friction factor and L is the length of channel between 
sections 1 and 2. The relation Dh � 4Rh should be observed when using the 
hydraulic radius instead of the hydraulic diameter.
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 (13-28)

其與點 A 在截面上的位置是無關的。因此，明渠中的液體在任

何截面上的總機械能可以用水頭表示為
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 (13-29)

其中 y 是流動深度，z 是渠道底面的高度，而 V 是平均流速。一個明渠流在上游截

面 1 與下游截面 2 的一維能量方程式可以寫成

能量方程式： 
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 (13-30)

由於摩擦效應的水頭損失 hL 在管流中被表示為

圖 13-16　一個液體在明渠中流動的
總能量。
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 (13-31)

其中 f 是平均摩擦因子且 L 是截面 1 與 2 之間的渠道長度。當使用水力半徑代替水

力直徑時，應該注意關係式 Dh =4Rh。

明渠中的流動是重力驅動的，因此典型的渠道是稍微傾斜向下的。渠道底部的

斜率被表示為
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 Flow in open channels is gravity driven, and thus a typical channel is 
slightly sloped down. The slope of the bottom of the channel is expressed as

 S0 5 tan a 5
z1 2 z2

x2 2 x1
>

z1 2 z2

L
 (13–32)

where � is the angle the channel bottom makes with the horizontal. In 
general, the bottom slope S0 is very small, and thus the channel bottom is 
nearly horizontal. Therefore, L � x2 � x1, where x is the distance in the 
horizontal direction. Also, the flow depth y, which is measured in the verti-
cal direction, can be taken to be the depth normal to the channel bottom 
with negligible error.
 If the channel bottom is straight so that the bottom slope is constant, the 
vertical drop between sections 1 and 2 can be expressed as z1 2 z2 5 S0L. 
Then the energy equation (Eq. 13–30) becomes

Energy equation: y1 1
V 

2
1

2g
1S0L 5y2 1

V 
2
2

2g
1hL (13–33)

This equation has the advantage that it is independent of a reference datum 
for elevation.
 In the design of open-channel systems, the bottom slope is selected such 
that it provides adequate elevation drop to overcome the frictional head loss 
and thus to maintain flow at the desired rate. Therefore, there is a close con-
nection between the head loss and the bottom slope, and it makes sense to 
express the head loss as a slope (or the tangent of an angle). This is done by 
defining a friction slope as

Friction slope: Sf 5
hL

L
 (13–34)

Then the energy equation is written as

Energy equation: y1 1
V 

2
1

2g
5y2 1

V 
2
2

2g
1 (Sf 2S0)L (13–35)

Note that the friction slope is equal to the bottom slope when the head loss 
is equal to the elevation drop. That is, Sf � S0 when hL � z1 � z2.
 Figure 13–17 also shows the energy line, which is a distance z � y � 
V 2/2g (total mechanical energy of the liquid expressed as a head) above 
the horizontal reference datum. The energy line is typically sloped down 
like the channel itself as a result of frictional losses, the vertical drop being 
equal to the head loss hL and thus the slope being the same as the friction 
slope. Note that if there were no head loss, the energy line would be hori-
zontal even when the channel is not. The elevation and velocity heads (z � y 
and V 2/2g) would then be able to convert to each other during flow in this 
case, but their sum would remain constant.

13–5 ■  UNIFORM FLOW IN CHANNELS
We mentioned in Sec. 13–1 that flow in a channel is called uniform flow if the 
flow depth (and thus the average flow velocity since V

#
 � AcV � constant 

in steady flow) remains constant. Uniform flow conditions are commonly 
encountered in practice in long straight runs of channels with constant slope, 
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 (13-32)

其中 a 是渠道底面與水平面之間的角度。一般而言，底面的斜率非常小，渠道底

面幾乎是水平面的。因此 L ≅x2 −x1，其中 x 是在水平方向的距離。同時，流動深

度 y 是沿著垂直方向作量測的，但是可以取作為垂直於底面的深度，其誤差是可忽

略的。

如果渠道底面是直的，使得底面斜率是常數，則截面 1 與 2 之間的垂降距離可

以被表示為 z1 − z2 =S0L。能量方程式 (13-30) 變成

能量方程式： 
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 (13-33)

這個方程式的好處是對於高度它是與參考基準面無關的。

在設計明渠系統時，底面斜率的選擇必須能夠提供適當的高度差來克服摩擦水

頭損失，使流動得以維持在想要的流率下。因此，水頭損失與底面斜率之間有密

切的關聯，使得把水頭損失用一個斜率 (或一個角度的正切) 來表示就顯得是合理

的。這可以定義一個摩擦斜率 (friction slope) 來達成，

摩擦斜率： 
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the horizontal reference datum. The energy line is typically sloped down 
like the channel itself as a result of frictional losses, the vertical drop being 
equal to the head loss hL and thus the slope being the same as the friction 
slope. Note that if there were no head loss, the energy line would be hori-
zontal even when the channel is not. The elevation and velocity heads (z � y 
and V 2/2g) would then be able to convert to each other during flow in this 
case, but their sum would remain constant.

13–5 ■  UNIFORM FLOW IN CHANNELS
We mentioned in Sec. 13–1 that flow in a channel is called uniform flow if the 
flow depth (and thus the average flow velocity since V

#
 � AcV � constant 

in steady flow) remains constant. Uniform flow conditions are commonly 
encountered in practice in long straight runs of channels with constant slope, 
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The total energy of a liquid at two 

sections of an open channel.
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因此能量方程式被寫成

能量方程式： 
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 Flow in open channels is gravity driven, and thus a typical channel is 
slightly sloped down. The slope of the bottom of the channel is expressed as

 S0 5 tan a 5
z1 2 z2

x2 2 x1
>

z1 2 z2

L
 (13–32)

where � is the angle the channel bottom makes with the horizontal. In 
general, the bottom slope S0 is very small, and thus the channel bottom is 
nearly horizontal. Therefore, L � x2 � x1, where x is the distance in the 
horizontal direction. Also, the flow depth y, which is measured in the verti-
cal direction, can be taken to be the depth normal to the channel bottom 
with negligible error.
 If the channel bottom is straight so that the bottom slope is constant, the 
vertical drop between sections 1 and 2 can be expressed as z1 2 z2 5 S0L. 
Then the energy equation (Eq. 13–30) becomes

Energy equation: y1 1
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This equation has the advantage that it is independent of a reference datum 
for elevation.
 In the design of open-channel systems, the bottom slope is selected such 
that it provides adequate elevation drop to overcome the frictional head loss 
and thus to maintain flow at the desired rate. Therefore, there is a close con-
nection between the head loss and the bottom slope, and it makes sense to 
express the head loss as a slope (or the tangent of an angle). This is done by 
defining a friction slope as
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 (13-35)

注意當水頭損失等於高度下降時，摩擦斜率等於底面斜率。也

就是當 hL = z1 − z2 時，Sf =S0。

圖  13-17 也顯示出能量線，其為水平基準面之上距離 

z +y +V2/2g 的地方 (液體的總機械能用水頭表示)。典型的能圖 13-17　一個明渠中的液體在兩個
截面之間的總能量。
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能量線

斜率：S0 =常數

水平參考基準面
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量線像渠道本身是傾斜向下的，這是摩擦損失的結果，其垂降距離等於水頭損失 

hL，因此其斜率與摩擦斜率相同。注意如果沒有水頭損失，能量線會是水平的，即

使當渠道不是水平時亦是。在此情況下，高度與速度水頭 (z+y 與 V2/2g) 將能夠互

相轉換，但是它們的加總會維持是常數。

13-5　渠道中的均勻流

我們在 13-1 節中提到流動深度 (因此是平均流速，因為在穩流時，
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 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma � 1, sonic for Ma � 1, and supersonic for 
Ma � 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr � V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma � V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by �A, where � is density and A is a represen-
tative area, which gives

Fr2 5
V 

2

gL c

rA

rA
5

2(1
2rV 2A)

mg
r

Inertia force

Gravity force
(13–8)

Here LcA represents volume, �LcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2�V 2A, which can be 
thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr � 1), a small disturbance trav-
els upstream (with a velocity c0 � V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr � 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V � c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr � 1, is swept 
downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V

#
5AcV 5Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

(13–9)

For a rectangular channel of width b we have Ac � byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a
V
#

  

2

gb2b
1/3

 (13–10)

The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).

Ma � V/c Fr � V/c0

Ma � 1 Fr � 1 
Ma � 1 Fr � 1 
Ma � 1 Fr � 1 

V �
c � �kRT �

c0 � �gy �

FIGURE 13–7
Analogy between the Mach number 
for compressible flow and the Froude 
number for open-channel flow.

yc

y

FIGURE 13–8
Definitions of subcritical flow and 
supercritical flow in terms of critical 
depth.
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=AcV =

常數) 維持是常數的渠道流稱為均勻流。均勻流在實際中通常發生在一個長而直的

渠道上，具有等斜率、等截面積、等渠道截面與內襯之中。在設計明渠時，非常希

望系統的大部都能夠是均勻流，因為這表示渠道會有等壁面高度，這會比較容易設

計與建造。

均勻流中的流動深度稱為正常深度 (normal depth) yn，而其

平均速度稱為均勻流速度 (uniform-flow velocity) V0。只要渠道

的斜率、截面積與表面粗糙度維持不變，流動就維持是均勻的 

(圖 13-18)。當底面的斜率增加時，流速增加而流動深度減小。

因此，一個新的均勻流，具有新的 (較低的) 流動深度被建立起

來了。如果底面的斜率被減小時，會發生相反的現象。

在一個具有等斜率 S0、等截面積 Ac 及等表面摩擦因子的明

渠中，當水頭損失等於高度下降時就建立了均勻流。因此，
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constant cross section, and constant surface lining. In the design of open 
channels, it is very desirable to have uniform flow in the majority of the 
system since this means having a channel of constant wall height, which is 
easier to design and build.
 The flow depth in uniform flow is called the normal depth yn, and the 
average flow velocity is called the uniform-flow velocity V0. The flow 
remains uniform as long as the slope, cross section, and surface roughness 
of the channel remain unchanged (Fig. 13–18). When the bottom slope is 
increased, the flow velocity increases and the flow depth decreases. There-
fore, a new uniform flow is established with a new (lower) flow depth. The 
opposite occurs if the bottom slope is decreased.
 During flow in open channels of constant slope S0, constant cross section Ac, 
and constant surface friction factor f, the terminal velocity is reached and 
thus uniform flow is established when the head loss equals the elevation 
drop. Therefore,

 hL 5 f 
L

Dh

 
V 

2

2g
  or S0L 5 f 

L

Rh

 
V 

2
0

8g
 (13–36)

since hL � S0L in uniform flow and Dh � 4Rh. Solving the second relation 
for V0, the uniform-flow velocity and the flow rate are determined to be

 V0 5 C"S0Rh  and  V
#
5 CAc"S0Rh (13–37)

where

 C 5"8g/f  (13–38)

is called the Chezy coefficient. The Eqs. 13–37 and the coefficient C are 
named in honor of the French engineer Antoine Chezy (1718–1798), who 
first proposed a similar relationship in about 1769. The Chezy coefficient is a 
dimensional quantity, and its value ranges from about 30 m1/2/s for small 
channels with rough surfaces to 90 m1/2/s for large channels with smooth 
surfaces.
 The Chezy coefficient can be determined in a straightforward manner 
from Eq. 13–38 by first determining the friction factor f as done for pipe 
flow in Chap. 8 from the Moody chart or the Colebrook equation for the 
fully rough turbulent limit (Re → �),

 f 5 [2.0 log(14.8Rh /e)]22 (13–39)

Here, � is the mean surface roughness. Note that open-channel flow is typi-
cally turbulent, and the flow is fully developed by the time uniform flow is 
established. Therefore, it is reasonable to use the friction factor relation for 
fully developed turbulent flow. Also, at large Reynolds numbers, the friction 
factor curves corresponding to specified relative roughness are nearly hori-
zontal, and thus the friction factor is independent of the Reynolds number. 
The flow in that region is called fully rough turbulent flow (Chap. 8).
 Since the introduction of the Chezy equations, considerable effort has 
been devoted by numerous investigators to the development of simpler 
empirical relations for the average velocity and flow rate. The most widely 
used equation was developed independently by the Frenchman Philippe-
Gaspard Gauckler (1826–1905) in 1868 and the Irishman Robert Manning 
(1816–1897) in 1889.
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x2 � x1 � 
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y1 � y2 � yn

x

Lcos� � L

FIGURE 13–18
In uniform flow, the flow depth y, 
the average flow velocity V, and the 
bottom slope S0 remain constant, and 
the head loss equals the elevation loss, 
hL � z1 � z2 � SfL  � S0L.
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constant cross section, and constant surface lining. In the design of open 
channels, it is very desirable to have uniform flow in the majority of the 
system since this means having a channel of constant wall height, which is 
easier to design and build.
 The flow depth in uniform flow is called the normal depth yn, and the 
average flow velocity is called the uniform-flow velocity V0. The flow 
remains uniform as long as the slope, cross section, and surface roughness 
of the channel remain unchanged (Fig. 13–18). When the bottom slope is 
increased, the flow velocity increases and the flow depth decreases. There-
fore, a new uniform flow is established with a new (lower) flow depth. The 
opposite occurs if the bottom slope is decreased.
 During flow in open channels of constant slope S0, constant cross section Ac, 
and constant surface friction factor f, the terminal velocity is reached and 
thus uniform flow is established when the head loss equals the elevation 
drop. Therefore,
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since hL � S0L in uniform flow and Dh � 4Rh. Solving the second relation 
for V0, the uniform-flow velocity and the flow rate are determined to be
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first proposed a similar relationship in about 1769. The Chezy coefficient is a 
dimensional quantity, and its value ranges from about 30 m1/2/s for small 
channels with rough surfaces to 90 m1/2/s for large channels with smooth 
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from Eq. 13–38 by first determining the friction factor f as done for pipe 
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fully rough turbulent limit (Re → �),
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Here, � is the mean surface roughness. Note that open-channel flow is typi-
cally turbulent, and the flow is fully developed by the time uniform flow is 
established. Therefore, it is reasonable to use the friction factor relation for 
fully developed turbulent flow. Also, at large Reynolds numbers, the friction 
factor curves corresponding to specified relative roughness are nearly hori-
zontal, and thus the friction factor is independent of the Reynolds number. 
The flow in that region is called fully rough turbulent flow (Chap. 8).
 Since the introduction of the Chezy equations, considerable effort has 
been devoted by numerous investigators to the development of simpler 
empirical relations for the average velocity and flow rate. The most widely 
used equation was developed independently by the Frenchman Philippe-
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�

z

x1 x2

y1
y2

z1 z2

(1)
(2)

hL � z1 � z2 � S0L

x2 � x1 � 

V1 � V2 � V0
y1 � y2 � yn

x

Lcos� � L

FIGURE 13–18
In uniform flow, the flow depth y, 
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 (13-36)

因為在均勻流中，hL =S0L 且 Dh =4Rh。從第二個關係式求解均勻流速度 V0 並決定

流率可得
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constant cross section, and constant surface lining. In the design of open 
channels, it is very desirable to have uniform flow in the majority of the 
system since this means having a channel of constant wall height, which is 
easier to design and build.
 The flow depth in uniform flow is called the normal depth yn, and the 
average flow velocity is called the uniform-flow velocity V0. The flow 
remains uniform as long as the slope, cross section, and surface roughness 
of the channel remain unchanged (Fig. 13–18). When the bottom slope is 
increased, the flow velocity increases and the flow depth decreases. There-
fore, a new uniform flow is established with a new (lower) flow depth. The 
opposite occurs if the bottom slope is decreased.
 During flow in open channels of constant slope S0, constant cross section Ac, 
and constant surface friction factor f, the terminal velocity is reached and 
thus uniform flow is established when the head loss equals the elevation 
drop. Therefore,
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since hL � S0L in uniform flow and Dh � 4Rh. Solving the second relation 
for V0, the uniform-flow velocity and the flow rate are determined to be

 V0 5 C"S0Rh  and  V
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is called the Chezy coefficient. The Eqs. 13–37 and the coefficient C are 
named in honor of the French engineer Antoine Chezy (1718–1798), who 
first proposed a similar relationship in about 1769. The Chezy coefficient is a 
dimensional quantity, and its value ranges from about 30 m1/2/s for small 
channels with rough surfaces to 90 m1/2/s for large channels with smooth 
surfaces.
 The Chezy coefficient can be determined in a straightforward manner 
from Eq. 13–38 by first determining the friction factor f as done for pipe 
flow in Chap. 8 from the Moody chart or the Colebrook equation for the 
fully rough turbulent limit (Re → �),

 f 5 [2.0 log(14.8Rh /e)]22 (13–39)

Here, � is the mean surface roughness. Note that open-channel flow is typi-
cally turbulent, and the flow is fully developed by the time uniform flow is 
established. Therefore, it is reasonable to use the friction factor relation for 
fully developed turbulent flow. Also, at large Reynolds numbers, the friction 
factor curves corresponding to specified relative roughness are nearly hori-
zontal, and thus the friction factor is independent of the Reynolds number. 
The flow in that region is called fully rough turbulent flow (Chap. 8).
 Since the introduction of the Chezy equations, considerable effort has 
been devoted by numerous investigators to the development of simpler 
empirical relations for the average velocity and flow rate. The most widely 
used equation was developed independently by the Frenchman Philippe-
Gaspard Gauckler (1826–1905) in 1868 and the Irishman Robert Manning 
(1816–1897) in 1889.
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constant cross section, and constant surface lining. In the design of open 
channels, it is very desirable to have uniform flow in the majority of the 
system since this means having a channel of constant wall height, which is 
easier to design and build.
 The flow depth in uniform flow is called the normal depth yn, and the 
average flow velocity is called the uniform-flow velocity V0. The flow 
remains uniform as long as the slope, cross section, and surface roughness 
of the channel remain unchanged (Fig. 13–18). When the bottom slope is 
increased, the flow velocity increases and the flow depth decreases. There-
fore, a new uniform flow is established with a new (lower) flow depth. The 
opposite occurs if the bottom slope is decreased.
 During flow in open channels of constant slope S0, constant cross section Ac, 
and constant surface friction factor f, the terminal velocity is reached and 
thus uniform flow is established when the head loss equals the elevation 
drop. Therefore,

 hL 5 f 
L

Dh

 
V 

2

2g
  or S0L 5 f 

L

Rh

 
V 

2
0

8g
 (13–36)

since hL � S0L in uniform flow and Dh � 4Rh. Solving the second relation 
for V0, the uniform-flow velocity and the flow rate are determined to be
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is called the Chezy coefficient. The Eqs. 13–37 and the coefficient C are 
named in honor of the French engineer Antoine Chezy (1718–1798), who 
first proposed a similar relationship in about 1769. The Chezy coefficient is a 
dimensional quantity, and its value ranges from about 30 m1/2/s for small 
channels with rough surfaces to 90 m1/2/s for large channels with smooth 
surfaces.
 The Chezy coefficient can be determined in a straightforward manner 
from Eq. 13–38 by first determining the friction factor f as done for pipe 
flow in Chap. 8 from the Moody chart or the Colebrook equation for the 
fully rough turbulent limit (Re → �),
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Here, � is the mean surface roughness. Note that open-channel flow is typi-
cally turbulent, and the flow is fully developed by the time uniform flow is 
established. Therefore, it is reasonable to use the friction factor relation for 
fully developed turbulent flow. Also, at large Reynolds numbers, the friction 
factor curves corresponding to specified relative roughness are nearly hori-
zontal, and thus the friction factor is independent of the Reynolds number. 
The flow in that region is called fully rough turbulent flow (Chap. 8).
 Since the introduction of the Chezy equations, considerable effort has 
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constant cross section, and constant surface lining. In the design of open 
channels, it is very desirable to have uniform flow in the majority of the 
system since this means having a channel of constant wall height, which is 
easier to design and build.
 The flow depth in uniform flow is called the normal depth yn, and the 
average flow velocity is called the uniform-flow velocity V0. The flow 
remains uniform as long as the slope, cross section, and surface roughness 
of the channel remain unchanged (Fig. 13–18). When the bottom slope is 
increased, the flow velocity increases and the flow depth decreases. There-
fore, a new uniform flow is established with a new (lower) flow depth. The 
opposite occurs if the bottom slope is decreased.
 During flow in open channels of constant slope S0, constant cross section Ac, 
and constant surface friction factor f, the terminal velocity is reached and 
thus uniform flow is established when the head loss equals the elevation 
drop. Therefore,
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since hL � S0L in uniform flow and Dh � 4Rh. Solving the second relation 
for V0, the uniform-flow velocity and the flow rate are determined to be

 V0 5 C"S0Rh  and  V
#
5 CAc"S0Rh (13–37)

where

 C 5"8g/f  (13–38)

is called the Chezy coefficient. The Eqs. 13–37 and the coefficient C are 
named in honor of the French engineer Antoine Chezy (1718–1798), who 
first proposed a similar relationship in about 1769. The Chezy coefficient is a 
dimensional quantity, and its value ranges from about 30 m1/2/s for small 
channels with rough surfaces to 90 m1/2/s for large channels with smooth 
surfaces.
 The Chezy coefficient can be determined in a straightforward manner 
from Eq. 13–38 by first determining the friction factor f as done for pipe 
flow in Chap. 8 from the Moody chart or the Colebrook equation for the 
fully rough turbulent limit (Re → �),
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Here, � is the mean surface roughness. Note that open-channel flow is typi-
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fully developed turbulent flow. Also, at large Reynolds numbers, the friction 
factor curves corresponding to specified relative roughness are nearly hori-
zontal, and thus the friction factor is independent of the Reynolds number. 
The flow in that region is called fully rough turbulent flow (Chap. 8).
 Since the introduction of the Chezy equations, considerable effort has 
been devoted by numerous investigators to the development of simpler 
empirical relations for the average velocity and flow rate. The most widely 
used equation was developed independently by the Frenchman Philippe-
Gaspard Gauckler (1826–1905) in 1868 and the Irishman Robert Manning 
(1816–1897) in 1889.
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稱為蔡希係數 (Chezy coefficient)。式 (13-37) 與係數 C 的命名是為紀念法國工程師

蔡希 (Antoine Chezy, 1718-1798)，他在約 1769 年提出了一個相似的關係式。蔡希

係數是一個有因次的量，其值從有粗糙表面的小渠道的 30 m1/2/s 到有光滑表面的

大渠道的 90 m1/2/s。

圖 13-18　在均勻流中，流動深度 
y、平均流速 V 及底面斜率 S0 都維
持為常數，並且水頭損失等於高度

損失，hL =z1 −z2 =SfL=S0L。
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斜率：S0 = tan a=常數

水頭損失=高度損失



16 流 體 力 學

蔡希係數可以用一種直接的方式從式 (13-38) 來決定。首先決定摩擦因子  f，

像在第 8 章中對管流所做的一樣，即從穆迪圖或對於完全粗糙的紊流 (Re → ∞)，

用科爾布魯克方程式，
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 (13-39)

其中，ε 是平均表面粗糙度。注意明渠流一般是紊流，並且在均勻流建立的時候，

流動是完全發展的。因此，使用完全發展的紊流的摩擦因子關係式是合理的。同

時，在大雷諾數時，相對粗糙度所對應的摩擦因子曲線幾乎是水平的，因此摩擦因

子與雷諾數無關。這個區域的流動稱為完全粗糙紊流 (fully rough turbulent flow) (第 

8 章)。

自從蔡希方程式被導入以後，許多研究者已經貢獻了可觀的努力來開發給平

均速度和流率更簡單的經驗式。最廣被使用的方程式是由法國人果克勒 (Philippe-

Gaspard Gauckler, 1826-1905) 在 1868 年與愛爾蘭人曼寧 (Robert Manning, 1816-

1897) 在 1889 年發展出來的。

果克勒與曼寧兩人都建議蔡希方程式中的常數可以表示為
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CHAPTER 13

 Both Gauckler and Manning made recommendations that the constant in 
the Chezy equation be expressed as

 C 5
a
n

 R1/6
h  (13–40)

where n is called the Manning coefficient, whose value depends on the 
roughness of the channel surfaces. Substituting into Eqs. 13–37 gives the fol-
lowing empirical relations known as the Manning equations (also referred 
to as Gauckler–Manning equations since they were first proposed by 
Gauckler) for the uniform-flow velocity and the flow rate,

Uniform flow: V0 5
a
n

 R2/3
h S1/2

0   and  V
#
5

a
n

 AcR
2/3
h S 1/2

0  (13–41)

The factor a is a dimensional constant whose value in SI units is a � 1 m1/3/s. 
Noting that 1 m � 3.2808 ft, its value in English units is

 a 51 m1/3/s 5 (3.2808 ft)1/3/s 51.486 ft1/3/s (13–42)

Note that the bottom slope S0 and the Manning coefficient n are dimension-
less quantities, and Eqs. 13–41 give the velocity in m/s and the flow rate in 
m3/s in SI units when Rh is expressed in m.
 Experimentally determined values of n are given in Table 13–1 for numer-
ous natural and artificial channels. More extensive tables are available in the 
literature. Note that the value of n varies from 0.010 for a glass channel to 
0.150 for a floodplain laden with trees (15 times that of a glass channel). 
There is considerable uncertainty in the value of n, especially in natural 
channels, as you would expect, since no two channels are exactly alike. The 
scatter can be 20 percent or more. Nevertheless, coefficient n is approxi-
mated as being independent of the size and shape of the channel—it varies 
only with the surface roughness.

Critical Uniform Flow
Flow through an open channel becomes critical flow when the Froude 
number Fr � 1 and thus the flow speed equals the wave speed Vc 5!gyc, 
where yc is the critical flow depth, defined previously (Eq. 13–9). When 
the volume flow rate V

#
, the channel slope S0, and the Manning coefficient n 

are known, the normal flow depth yn can be determined from the Manning 
equation (Eq. 13–41). However, since Ac and Rh are both functions of yn, 
the equation often ends up being implicit in yn and requires a numerical 
(or trial and error) approach to solve. If yn � yc, the flow is uniform critical 
flow, and bottom slope S0 equals the critical slope Sc in this case. When flow 
depth yn is known instead of the flow rate V

#
, the flow rate can be determined 

from the Manning equation and the critical flow depth from Eq. 13–9. 
Again the flow is critical only if yn � yc.
 During uniform critical flow, S0 � Sc and yn � yc. Replacing V

#
 and S0 in 

the Manning equation by V
#
5Ac!gyc and Sc, respectively, and solving for Sc 

gives the following general relation for the critical slope,

Critical slope (general): Sc 5
gn2yc 

a2R4/3
h

 (13–43)

TABLE 13–1

Mean values of the Manning 
coefficient n for water flow in 
open channels*

From Chow (1959).

Wall Material n

A. Artificially lined channels
 Glass 0.010

0.011
0.012
0.014
0.015
0.013
0.012
0.014
0.012
0.013
0.014
0.015
0.016
0.022
0.025

0.022
0.025
0.030
0.035

0.030
0.040
0.035
0.050

0.035
0.050
0.075
0.150

 Brass 
 Steel, smooth 
 Steel, painted 
 Steel, riveted 
 Cast iron 
 Concrete, finished 
 Concrete, unfinished 
 Wood, planed 
 Wood, unplaned 
 Clay tile 
 Brickwork 
 Asphalt 
 Corrugated metal 
 Rubble masonry 
B. Excavated earth channels
 Clean 
 Gravelly 
 Weedy 
 Stony, cobbles 
C. Natural channels
 Clean and straight 
 Sluggish with deep pools 
 Major rivers 
 Mountain streams 
D. Floodplains
 Pasture, farmland 
 Light brush 
 Heavy brush 
 Trees 

* The uncertainty in n can be � 20 percent or 
more.
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 (13-40)

其中 n 稱為曼寧係數 (Manning coefficient)，其值相依於渠道面的粗糙度。將其代入

式 (13-37) 中得到以下的經驗式稱為曼寧方程式 (Manning equations)，也稱為果克

勒–曼寧方程式 (Gauckler-Manning equations)，因為它們最先是由果克勒提出的。

此方程式所給的均勻流速度與流率為，

均勻流： 

739
CHAPTER 13

 Both Gauckler and Manning made recommendations that the constant in 
the Chezy equation be expressed as

 C 5
a
n

 R1/6
h  (13–40)

where n is called the Manning coefficient, whose value depends on the 
roughness of the channel surfaces. Substituting into Eqs. 13–37 gives the fol-
lowing empirical relations known as the Manning equations (also referred 
to as Gauckler–Manning equations since they were first proposed by 
Gauckler) for the uniform-flow velocity and the flow rate,

Uniform flow: V0 5
a
n

 R2/3
h S1/2

0   and  V
#
5

a
n

 AcR
2/3
h S 1/2

0  (13–41)

The factor a is a dimensional constant whose value in SI units is a � 1 m1/3/s. 
Noting that 1 m � 3.2808 ft, its value in English units is

 a 51 m1/3/s 5 (3.2808 ft)1/3/s 51.486 ft1/3/s (13–42)

Note that the bottom slope S0 and the Manning coefficient n are dimension-
less quantities, and Eqs. 13–41 give the velocity in m/s and the flow rate in 
m3/s in SI units when Rh is expressed in m.
 Experimentally determined values of n are given in Table 13–1 for numer-
ous natural and artificial channels. More extensive tables are available in the 
literature. Note that the value of n varies from 0.010 for a glass channel to 
0.150 for a floodplain laden with trees (15 times that of a glass channel). 
There is considerable uncertainty in the value of n, especially in natural 
channels, as you would expect, since no two channels are exactly alike. The 
scatter can be 20 percent or more. Nevertheless, coefficient n is approxi-
mated as being independent of the size and shape of the channel—it varies 
only with the surface roughness.

Critical Uniform Flow
Flow through an open channel becomes critical flow when the Froude 
number Fr � 1 and thus the flow speed equals the wave speed Vc 5!gyc, 
where yc is the critical flow depth, defined previously (Eq. 13–9). When 
the volume flow rate V

#
, the channel slope S0, and the Manning coefficient n 

are known, the normal flow depth yn can be determined from the Manning 
equation (Eq. 13–41). However, since Ac and Rh are both functions of yn, 
the equation often ends up being implicit in yn and requires a numerical 
(or trial and error) approach to solve. If yn � yc, the flow is uniform critical 
flow, and bottom slope S0 equals the critical slope Sc in this case. When flow 
depth yn is known instead of the flow rate V

#
, the flow rate can be determined 

from the Manning equation and the critical flow depth from Eq. 13–9. 
Again the flow is critical only if yn � yc.
 During uniform critical flow, S0 � Sc and yn � yc. Replacing V

#
 and S0 in 

the Manning equation by V
#
5Ac!gyc and Sc, respectively, and solving for Sc 

gives the following general relation for the critical slope,

Critical slope (general): Sc 5
gn2yc 

a2R4/3
h

 (13–43)

TABLE 13–1

Mean values of the Manning 
coefficient n for water flow in 
open channels*

From Chow (1959).

Wall Material n

A. Artificially lined channels
 Glass 0.010

0.011
0.012
0.014
0.015
0.013
0.012
0.014
0.012
0.013
0.014
0.015
0.016
0.022
0.025

0.022
0.025
0.030
0.035

0.030
0.040
0.035
0.050

0.035
0.050
0.075
0.150

 Brass 
 Steel, smooth 
 Steel, painted 
 Steel, riveted 
 Cast iron 
 Concrete, finished 
 Concrete, unfinished 
 Wood, planed 
 Wood, unplaned 
 Clay tile 
 Brickwork 
 Asphalt 
 Corrugated metal 
 Rubble masonry 
B. Excavated earth channels
 Clean 
 Gravelly 
 Weedy 
 Stony, cobbles 
C. Natural channels
 Clean and straight 
 Sluggish with deep pools 
 Major rivers 
 Mountain streams 
D. Floodplains
 Pasture, farmland 
 Light brush 
 Heavy brush 
 Trees 

* The uncertainty in n can be � 20 percent or 
more.

725-786_cengel_ch13.indd   739 7/2/13   6:56 PM

與

739
CHAPTER 13

 Both Gauckler and Manning made recommendations that the constant in 
the Chezy equation be expressed as

 C 5
a
n

 R1/6
h  (13–40)

where n is called the Manning coefficient, whose value depends on the 
roughness of the channel surfaces. Substituting into Eqs. 13–37 gives the fol-
lowing empirical relations known as the Manning equations (also referred 
to as Gauckler–Manning equations since they were first proposed by 
Gauckler) for the uniform-flow velocity and the flow rate,

Uniform flow: V0 5
a
n

 R2/3
h S1/2

0   and  V
#
5

a
n

 AcR
2/3
h S 1/2

0  (13–41)

The factor a is a dimensional constant whose value in SI units is a � 1 m1/3/s. 
Noting that 1 m � 3.2808 ft, its value in English units is

 a 51 m1/3/s 5 (3.2808 ft)1/3/s 51.486 ft1/3/s (13–42)

Note that the bottom slope S0 and the Manning coefficient n are dimension-
less quantities, and Eqs. 13–41 give the velocity in m/s and the flow rate in 
m3/s in SI units when Rh is expressed in m.
 Experimentally determined values of n are given in Table 13–1 for numer-
ous natural and artificial channels. More extensive tables are available in the 
literature. Note that the value of n varies from 0.010 for a glass channel to 
0.150 for a floodplain laden with trees (15 times that of a glass channel). 
There is considerable uncertainty in the value of n, especially in natural 
channels, as you would expect, since no two channels are exactly alike. The 
scatter can be 20 percent or more. Nevertheless, coefficient n is approxi-
mated as being independent of the size and shape of the channel—it varies 
only with the surface roughness.

Critical Uniform Flow
Flow through an open channel becomes critical flow when the Froude 
number Fr � 1 and thus the flow speed equals the wave speed Vc 5!gyc, 
where yc is the critical flow depth, defined previously (Eq. 13–9). When 
the volume flow rate V

#
, the channel slope S0, and the Manning coefficient n 

are known, the normal flow depth yn can be determined from the Manning 
equation (Eq. 13–41). However, since Ac and Rh are both functions of yn, 
the equation often ends up being implicit in yn and requires a numerical 
(or trial and error) approach to solve. If yn � yc, the flow is uniform critical 
flow, and bottom slope S0 equals the critical slope Sc in this case. When flow 
depth yn is known instead of the flow rate V

#
, the flow rate can be determined 

from the Manning equation and the critical flow depth from Eq. 13–9. 
Again the flow is critical only if yn � yc.
 During uniform critical flow, S0 � Sc and yn � yc. Replacing V

#
 and S0 in 

the Manning equation by V
#
5Ac!gyc and Sc, respectively, and solving for Sc 

gives the following general relation for the critical slope,

Critical slope (general): Sc 5
gn2yc 

a2R4/3
h

 (13–43)

TABLE 13–1

Mean values of the Manning 
coefficient n for water flow in 
open channels*

From Chow (1959).

Wall Material n

A. Artificially lined channels
 Glass 0.010

0.011
0.012
0.014
0.015
0.013
0.012
0.014
0.012
0.013
0.014
0.015
0.016
0.022
0.025

0.022
0.025
0.030
0.035

0.030
0.040
0.035
0.050

0.035
0.050
0.075
0.150

 Brass 
 Steel, smooth 
 Steel, painted 
 Steel, riveted 
 Cast iron 
 Concrete, finished 
 Concrete, unfinished 
 Wood, planed 
 Wood, unplaned 
 Clay tile 
 Brickwork 
 Asphalt 
 Corrugated metal 
 Rubble masonry 
B. Excavated earth channels
 Clean 
 Gravelly 
 Weedy 
 Stony, cobbles 
C. Natural channels
 Clean and straight 
 Sluggish with deep pools 
 Major rivers 
 Mountain streams 
D. Floodplains
 Pasture, farmland 
 Light brush 
 Heavy brush 
 Trees 

* The uncertainty in n can be � 20 percent or 
more.

725-786_cengel_ch13.indd   739 7/2/13   6:56 PM

 (13-41)

因子 a 是有因次的常數，其 SI 單位的值為 a=1 m1/3/s。注意 1 m = 3.2808 ft，因此

其英制單位的值為
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to as Gauckler–Manning equations since they were first proposed by 
Gauckler) for the uniform-flow velocity and the flow rate,

Uniform flow: V0 5
a
n

 R2/3
h S1/2

0   and  V
#
5

a
n

 AcR
2/3
h S 1/2

0  (13–41)

The factor a is a dimensional constant whose value in SI units is a � 1 m1/3/s. 
Noting that 1 m � 3.2808 ft, its value in English units is

 a 51 m1/3/s 5 (3.2808 ft)1/3/s 51.486 ft1/3/s (13–42)

Note that the bottom slope S0 and the Manning coefficient n are dimension-
less quantities, and Eqs. 13–41 give the velocity in m/s and the flow rate in 
m3/s in SI units when Rh is expressed in m.
 Experimentally determined values of n are given in Table 13–1 for numer-
ous natural and artificial channels. More extensive tables are available in the 
literature. Note that the value of n varies from 0.010 for a glass channel to 
0.150 for a floodplain laden with trees (15 times that of a glass channel). 
There is considerable uncertainty in the value of n, especially in natural 
channels, as you would expect, since no two channels are exactly alike. The 
scatter can be 20 percent or more. Nevertheless, coefficient n is approxi-
mated as being independent of the size and shape of the channel—it varies 
only with the surface roughness.

Critical Uniform Flow
Flow through an open channel becomes critical flow when the Froude 
number Fr � 1 and thus the flow speed equals the wave speed Vc 5!gyc, 
where yc is the critical flow depth, defined previously (Eq. 13–9). When 
the volume flow rate V

#
, the channel slope S0, and the Manning coefficient n 

are known, the normal flow depth yn can be determined from the Manning 
equation (Eq. 13–41). However, since Ac and Rh are both functions of yn, 
the equation often ends up being implicit in yn and requires a numerical 
(or trial and error) approach to solve. If yn � yc, the flow is uniform critical 
flow, and bottom slope S0 equals the critical slope Sc in this case. When flow 
depth yn is known instead of the flow rate V

#
, the flow rate can be determined 

from the Manning equation and the critical flow depth from Eq. 13–9. 
Again the flow is critical only if yn � yc.
 During uniform critical flow, S0 � Sc and yn � yc. Replacing V

#
 and S0 in 

the Manning equation by V
#
5Ac!gyc and Sc, respectively, and solving for Sc 

gives the following general relation for the critical slope,

Critical slope (general): Sc 5
gn2yc 

a2R4/3
h

 (13–43)

TABLE 13–1

Mean values of the Manning 
coefficient n for water flow in 
open channels*

From Chow (1959).

Wall Material n

A. Artificially lined channels
 Glass 0.010

0.011
0.012
0.014
0.015
0.013
0.012
0.014
0.012
0.013
0.014
0.015
0.016
0.022
0.025

0.022
0.025
0.030
0.035

0.030
0.040
0.035
0.050

0.035
0.050
0.075
0.150

 Brass 
 Steel, smooth 
 Steel, painted 
 Steel, riveted 
 Cast iron 
 Concrete, finished 
 Concrete, unfinished 
 Wood, planed 
 Wood, unplaned 
 Clay tile 
 Brickwork 
 Asphalt 
 Corrugated metal 
 Rubble masonry 
B. Excavated earth channels
 Clean 
 Gravelly 
 Weedy 
 Stony, cobbles 
C. Natural channels
 Clean and straight 
 Sluggish with deep pools 
 Major rivers 
 Mountain streams 
D. Floodplains
 Pasture, farmland 
 Light brush 
 Heavy brush 
 Trees 

* The uncertainty in n can be � 20 percent or 
more.
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 (13-42)

注意底面斜率 S0 與曼寧係數 n 是無因次參數，並且當 Rh 用 m 表示時，式 (13-41) 

給出 SI 單位為 m/s 的速度與單位為 m3/s 的流率。

對於許多自然的與人工的渠道，實驗決定的 n 的值被給在表 13-1 中。更廣泛

的表可以在文獻中找到。注意 n 的值從給玻璃渠道的 0.010 變化到給長滿樹木的氾

濫平原的 0.150 (是玻璃渠道的 15 倍)。在 n 的值中有可觀的不確定性，特別是在

自然渠道中，正如你所預期的，因為沒有兩個渠道完全相同，其散佈可以達 20% 
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或更多。無論如何，係數 n 被近似為與渠道的大小與形狀無

關－它只隨表面粗糙度而變。

臨界均勻流

通過明渠中的流動當福勞數 Fr=1 時變成臨界流，並且其

流速等於波速 Vc = gyc，其中 yc 是臨界深度，之前定義於式 

(13-a)。當體積流率 
⋅
V、渠道斜率 S0 與曼寧係數 n 為已知時，

正常深度 yn 可以用曼寧方程式決定 [式 (13-41)]。然而，因為 

Ac 與 Rh 兩者都是 yn 的函數，此方程式變成對 yn 是隱式的並

且需要用數值方法 (或試誤法) 來求解。如果 yn =yc，此流動

是均勻的臨界流，且在這種情況下底面斜率 S0 等於臨界斜率 

Sc。當流動深度 (而不是流率 
⋅
V ) 為已知時，流率可用曼寧方程

式來決定，並用式 (13-9) 決定臨界深度。再者，只有當 yn =yc 

時流動才是臨界的。

當均勻臨界流時，S0 =Sc 且 yn =yc。將曼寧方程式中的 

730
OPEN-CHANNEL FLOW

 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma � 1, sonic for Ma � 1, and supersonic for 
Ma � 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr � V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma � V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by �A, where � is density and A is a represen-
tative area, which gives

Fr2 5
V 

2

gL c

rA

rA
5

2(1
2rV 2A)

mg
r

Inertia force

Gravity force
(13–8)

Here LcA represents volume, �LcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2�V 2A, which can be 
thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr � 1), a small disturbance trav-
els upstream (with a velocity c0 � V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr � 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V � c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr � 1, is swept 
downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V

#
5AcV 5Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

(13–9)

For a rectangular channel of width b we have Ac � byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a
V
#

  

2

gb2b
1/3

 (13–10)

The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).

Ma � V/c Fr � V/c0

Ma � 1 Fr � 1 
Ma � 1 Fr � 1 
Ma � 1 Fr � 1 

V �
c � �kRT �

c0 � �gy �

FIGURE 13–7
Analogy between the Mach number 
for compressible flow and the Froude 
number for open-channel flow.

yc

y

FIGURE 13–8
Definitions of subcritical flow and 
supercritical flow in terms of critical 
depth.
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thought of as the dynamic pressure 1

2�V 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
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be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
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downstream when Fr � 1, and appears frozen on the surface when Fr � 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V
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. When the flow is critical, 

Fr � 1 and the average flow velocity is V � !gyc, where yc is the 
critical depth. Noting that V
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expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

(13–9)
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depth relation reduces to
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The liquid depth is y � yc for subcritical flow and y � yc for supercritical 
flow (Fig. 13–8).
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FIGURE 13–8
Definitions of subcritical flow and 
supercritical flow in terms of critical 
depth.
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=Ac gyc  與 Sc 來替換，並解出 Sc，就得到以

下給臨界斜率的一般式，

臨界斜率 (一般式)： 

739
CHAPTER 13

 Both Gauckler and Manning made recommendations that the constant in 
the Chezy equation be expressed as

 C 5
a
n

 R1/6
h  (13–40)

where n is called the Manning coefficient, whose value depends on the 
roughness of the channel surfaces. Substituting into Eqs. 13–37 gives the fol-
lowing empirical relations known as the Manning equations (also referred 
to as Gauckler–Manning equations since they were first proposed by 
Gauckler) for the uniform-flow velocity and the flow rate,

Uniform flow: V0 5
a
n

 R2/3
h S1/2

0   and  V
#
5

a
n

 AcR
2/3
h S 1/2

0  (13–41)

The factor a is a dimensional constant whose value in SI units is a � 1 m1/3/s. 
Noting that 1 m � 3.2808 ft, its value in English units is

 a 51 m1/3/s 5 (3.2808 ft)1/3/s 51.486 ft1/3/s (13–42)

Note that the bottom slope S0 and the Manning coefficient n are dimension-
less quantities, and Eqs. 13–41 give the velocity in m/s and the flow rate in 
m3/s in SI units when Rh is expressed in m.
 Experimentally determined values of n are given in Table 13–1 for numer-
ous natural and artificial channels. More extensive tables are available in the 
literature. Note that the value of n varies from 0.010 for a glass channel to 
0.150 for a floodplain laden with trees (15 times that of a glass channel). 
There is considerable uncertainty in the value of n, especially in natural 
channels, as you would expect, since no two channels are exactly alike. The 
scatter can be 20 percent or more. Nevertheless, coefficient n is approxi-
mated as being independent of the size and shape of the channel—it varies 
only with the surface roughness.

Critical Uniform Flow
Flow through an open channel becomes critical flow when the Froude 
number Fr � 1 and thus the flow speed equals the wave speed Vc 5!gyc, 
where yc is the critical flow depth, defined previously (Eq. 13–9). When 
the volume flow rate V

#
, the channel slope S0, and the Manning coefficient n 

are known, the normal flow depth yn can be determined from the Manning 
equation (Eq. 13–41). However, since Ac and Rh are both functions of yn, 
the equation often ends up being implicit in yn and requires a numerical 
(or trial and error) approach to solve. If yn � yc, the flow is uniform critical 
flow, and bottom slope S0 equals the critical slope Sc in this case. When flow 
depth yn is known instead of the flow rate V

#
, the flow rate can be determined 

from the Manning equation and the critical flow depth from Eq. 13–9. 
Again the flow is critical only if yn � yc.
 During uniform critical flow, S0 � Sc and yn � yc. Replacing V

#
 and S0 in 

the Manning equation by V
#
5Ac!gyc and Sc, respectively, and solving for Sc 

gives the following general relation for the critical slope,

Critical slope (general): Sc 5
gn2yc 

a2R4/3
h

 (13–43)

TABLE 13–1

Mean values of the Manning 
coefficient n for water flow in 
open channels*

From Chow (1959).

Wall Material n

A. Artificially lined channels
 Glass 0.010

0.011
0.012
0.014
0.015
0.013
0.012
0.014
0.012
0.013
0.014
0.015
0.016
0.022
0.025

0.022
0.025
0.030
0.035

0.030
0.040
0.035
0.050

0.035
0.050
0.075
0.150

 Brass 
 Steel, smooth 
 Steel, painted 
 Steel, riveted 
 Cast iron 
 Concrete, finished 
 Concrete, unfinished 
 Wood, planed 
 Wood, unplaned 
 Clay tile 
 Brickwork 
 Asphalt 
 Corrugated metal 
 Rubble masonry 
B. Excavated earth channels
 Clean 
 Gravelly 
 Weedy 
 Stony, cobbles 
C. Natural channels
 Clean and straight 
 Sluggish with deep pools 
 Major rivers 
 Mountain streams 
D. Floodplains
 Pasture, farmland 
 Light brush 
 Heavy brush 
 Trees 

* The uncertainty in n can be � 20 percent or 
more.
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 (13-43)

對於薄膜流，或在一個寬矩形渠道中的流動，b >>yc，式 

(13-43) 簡化為

臨界斜率 (b>>yc)： 

740
OPEN-CHANNEL FLOW

For film flow or flow in a wide rectangular channel with b �� yc, Eq. 13–43 
simplifies to

Critical slope (b �� yc): Sc 5
gn2

a2y1/3
c

 (13–44)

This equation gives the slope necessary to maintain a critical flow of depth yc 
in a wide rectangular channel having a Manning coefficient of n.

Superposition Method for Nonuniform Perimeters
The surface roughness and thus the Manning coefficient for most natural and 
some human-made channels vary along the wetted perimeter and even along 
the channel. A river, for example, may have a stony bottom for its regular 
bed but a surface covered with bushes for its extended floodplain. There are 
several methods for solving such problems, either by finding an effective 
Manning coefficient n for the entire channel cross section, or by consider-
ing the channel in subsections and applying the superposition principle. For 
example, a channel cross section can be divided into N subsections, each 
with its own uniform Manning coefficient and flow rate. When determining 
the perimeter of a section, only the wetted portion of the boundary for that 
section is considered, and the imaginary boundaries are ignored. The flow 
rate through the channel is the sum of the flow rates through all the sections, 
as illustrated in Example 13–4.

EXAMPLE 13–2    Flow Rate in an Open Channel in Uniform Flow 

Water is flowing in a weedy excavated earth channel of trapezoidal cross 
section with a bottom width of 0.8 m, trapezoid angle of 60�, and a bottom 
slope angle of 0.3�, as shown in Fig. 13–19. If the flow depth is measured 
to be 0.52 m, determine the flow rate of water through the channel. What 
would your answer be if the bottom angle were 1�? 

SOLUTION  Water is flowing in a weedy trapezoidal channel of given dimen-
sions. The flow rate corresponding to a measured value of flow depth is to 
be determined. 
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is constant. 
3 The roughness of the wetted surface of the channel and thus the friction 
coefficient are constant.
Properties  The Manning coefficient for an open channel with weedy surfaces 
is n � 0.030.
Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 
channel are

 Ac 5yab 1
y

tan u
b 5 (0.52 m)a0.8 m 1

0.52 m

tan 608
b 50.5721 m2

 p 5b 1
2y

sin u
50.8 m 1

2 30.52 m

sin 608
52.001 m

 Rh 5
Ac

p
5

0.5721 m2

2.991 m
50.2859 m

The bottom slope of the channel is

S0 5 tan a 5 tan 0.38 50.005236

y � 0.52 m

� � 60°

b � 0.8 m

FIGURE 13–19
Schematic for Example 13–2.
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 (13-44)

這個方程式給出在一個寬的矩形渠道，其曼寧係數為 n，要維

持深度 yc 的臨界流所需要的斜率。

非均勻周長的疊加法

大多數自然的與一些人造的渠道的粗糙度會沿著溼邊周長，甚至沿著渠道變

化。例如一條河中，其正常河床可能有石礫底面，但是其延伸的氾濫平原可能是生

滿灌木的表面。有幾個方法來解決這樣的問題，為整個渠道截面找出等效曼寧係

數，或將渠道考慮成由幾個次區域組成並應用疊加原理。例如，一個渠道的截面可

被分成 N 個次區域，每一個有其自己的曼寧係數與流率。當決定一個區域的周長

壁面材質 n

A. 人造襯裡渠道
 玻璃
 黃銅
 鋼，平滑
 鋼，油漆
 鋼，鉚釘
 鑄鐵
 混凝土，精製
 混凝土，粗製
 木材，鉋光
 木材，無鉋光
 陶板
 砌磚
 瀝青
 折疊金屬
 粗石工
B. 濬渠的土渠道
 乾淨
 礫土
 多草
 大礫石
C. 自然渠道
 乾淨且直
 有水池的緩流
 主要河流
 山溪
D. 氾濫平原
 牧地，農地
 疏灌木
 濃灌木
 樹木

0.010
0.011
0.012
0.014
0.015
0.013
0.012
0.014
0.012
0.013
0.014
0.015
0.016
0.022
0.025

0.022
0.025
0.030
0.035

0.030
0.040
0.035
0.050

0.035
0.050
0.075
0.150

* n 的不確定性可達 ±20% 或更多。

表 13-1　明渠中的水流的曼寧係
數的平均值* 
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時，只有那個區域邊界的溼部分被考慮，而假想邊界則被忽略。通過渠道的流率是

通過所有區域的流率的加總，如例題 13-4 所說明的。

 例題 13-2　　明渠在均勻流時的流率

水在一條多草的人工濬渫渠道中流動，其梯形截面的底寬度 0.8 

m，角度 60°，且底面傾斜角度為 0.3°，如圖 13-19 所示。如果量

測到的流動深度是 0.52 m，試求水通過這個渠道的流率。如果底

面傾斜角度是 1°，你的答案會是什麼呢？

解答：水在一個已知尺寸的多草的矩形渠道中流動。要決定對應

一個流動深度量測值的流率。

假設：1. 流動是穩定且均勻的。2. 底面斜率是常數。3. 渠道的溼邊的粗糙度 (即摩擦係數)，是常

數。

性質：多草表面的明渠的曼寧係數是 n=0.030。

解析：渠道的截面積、周長與水力半徑是

740
OPEN-CHANNEL FLOW

For film flow or flow in a wide rectangular channel with b �� yc, Eq. 13–43 
simplifies to

Critical slope (b �� yc): Sc 5
gn2

a2y1/3
c

 (13–44)

This equation gives the slope necessary to maintain a critical flow of depth yc 
in a wide rectangular channel having a Manning coefficient of n.

Superposition Method for Nonuniform Perimeters
The surface roughness and thus the Manning coefficient for most natural and 
some human-made channels vary along the wetted perimeter and even along 
the channel. A river, for example, may have a stony bottom for its regular 
bed but a surface covered with bushes for its extended floodplain. There are 
several methods for solving such problems, either by finding an effective 
Manning coefficient n for the entire channel cross section, or by consider-
ing the channel in subsections and applying the superposition principle. For 
example, a channel cross section can be divided into N subsections, each 
with its own uniform Manning coefficient and flow rate. When determining 
the perimeter of a section, only the wetted portion of the boundary for that 
section is considered, and the imaginary boundaries are ignored. The flow 
rate through the channel is the sum of the flow rates through all the sections, 
as illustrated in Example 13–4.

EXAMPLE 13–2    Flow Rate in an Open Channel in Uniform Flow 

Water is flowing in a weedy excavated earth channel of trapezoidal cross 
section with a bottom width of 0.8 m, trapezoid angle of 60�, and a bottom 
slope angle of 0.3�, as shown in Fig. 13–19. If the flow depth is measured 
to be 0.52 m, determine the flow rate of water through the channel. What 
would your answer be if the bottom angle were 1�? 

SOLUTION  Water is flowing in a weedy trapezoidal channel of given dimen-
sions. The flow rate corresponding to a measured value of flow depth is to 
be determined. 
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is constant. 
3 The roughness of the wetted surface of the channel and thus the friction 
coefficient are constant.
Properties  The Manning coefficient for an open channel with weedy surfaces 
is n � 0.030.
Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 
channel are

 Ac 5yab 1
y

tan u
b 5 (0.52 m)a0.8 m 1

0.52 m

tan 608
b 50.5721 m2

 p 5b 1
2y

sin u
50.8 m 1

2 30.52 m

sin 608
52.001 m

 Rh 5
Ac

p
5

0.5721 m2

2.991 m
50.2859 m

The bottom slope of the channel is

S0 5 tan a 5 tan 0.38 50.005236

y � 0.52 m

� � 60°

b � 0.8 m

FIGURE 13–19
Schematic for Example 13–2.
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渠道的底面斜率是

S0 = tan a= tan 0.3°=0.005236

通過渠道的流率用曼寧方程式決定，
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FIGURE 13–20
Schematic for Example 13–3.

Then the flow rate through the channel is determined from the Manning 
equation to be

V
#
5

a
n

 AcR
2/3
h S1/2

0 5
1 m1/3/s

0.030
(0.5721 m2)(0.2859 m)2/3(0.005236)1/2 50.60 m3/s

The flow rate for a bottom angle of 1� is determined by using S0 � tan 
� � tan 1� � 0.01746 in the last relation. It gives V

#
 � 1.1 m3/s.

Discussion  Note that the flow rate is a strong function of the bottom angle. 
Also, there is considerable uncertainty in the value of the Manning coef-
ficient, and thus in the flow rate calculated. A 10 percent uncertainty in n 
results in a 10 percent uncertainty in the flow rate. Final answers are there-
fore given to only two significant digits.

EXAMPLE 13–3    The Height of a Rectangular Channel

Water is to be transported in an unfinished-concrete rectangular channel 
with a bottom width of 1.2 m at a rate of 1.5 m3/s. The terrain is such that 
the channel bottom drops 0.6 m per 300 m length. Determine the minimum 
height of the channel under uniform-flow conditions (Fig. 13–20). What 
would your answer be if the bottom drop is just 0.3 m per 300 m length?

SOLUTION  Water is flowing in an unfinished-concrete rectangular channel 
with a specified bottom width. The minimum channel height corresponding 
to a specified flow rate is to be determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 
channel are

Ac 5 by 5 (1.2 m)y  p 5 b 1 2y 5 (1.2 m) 1 2y  Rh 5
Ac

p
5

1.2y

1.2 1 2y

The bottom slope of the channel is S0 � 0.6/300 � 0.002. Using the Manning 
equation, the flow rate through the channel is expressed as

 V
#
5

a
n

AcR
2/3
h S1/2

0

 1.5 m3/s 5
1 m1/3/s

0.014
 (1.2y m2)a 1.2y

1.2 1 2y
 mb

2/3

(0.002)1/2

which is a nonlinear equation in y. Using an equation solver such as EES or 
an itirative approach, the flow depth is determined to be

y 5 0.799 m

If the bottom drop were just 0.3 m per 300 m length, the bottom slope 
would be S0 � 0.001, and the flow depth would be y � 1.05 m.
Discussion  Note that y is the flow depth, and thus this is the minimum 
value for the channel height. Also, there is considerable uncertainty in the 
value of the Manning coefficient n, and this should be considered when 
deciding the height of the channel to be built.
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底面角度為 1° 的流率可以用 S0 = tan a = tan 1° =0.01746 代入最後一個關係式中來決定。結果是 

  
⋅
V =1.1 m3/s。

討論：注意流率是底面角度的強函數。同時，曼寧係數的值，從而使計算出的流率，有可觀的不確

定性。若 n 值有 10% 的不確定性，會導致流率也有 10% 的不確定性。因此最後的結果只以兩個有

效數字給出。

圖 13-19　例題 13-2 的示意圖。
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For film flow or flow in a wide rectangular channel with b �� yc, Eq. 13–43 
simplifies to

Critical slope (b �� yc): Sc 5
gn2

a2y1/3
c

 (13–44)

This equation gives the slope necessary to maintain a critical flow of depth yc 
in a wide rectangular channel having a Manning coefficient of n.

Superposition Method for Nonuniform Perimeters
The surface roughness and thus the Manning coefficient for most natural and 
some human-made channels vary along the wetted perimeter and even along 
the channel. A river, for example, may have a stony bottom for its regular 
bed but a surface covered with bushes for its extended floodplain. There are 
several methods for solving such problems, either by finding an effective 
Manning coefficient n for the entire channel cross section, or by consider-
ing the channel in subsections and applying the superposition principle. For 
example, a channel cross section can be divided into N subsections, each 
with its own uniform Manning coefficient and flow rate. When determining 
the perimeter of a section, only the wetted portion of the boundary for that 
section is considered, and the imaginary boundaries are ignored. The flow 
rate through the channel is the sum of the flow rates through all the sections, 
as illustrated in Example 13–4.

EXAMPLE 13–2    Flow Rate in an Open Channel in Uniform Flow 

Water is flowing in a weedy excavated earth channel of trapezoidal cross 
section with a bottom width of 0.8 m, trapezoid angle of 60�, and a bottom 
slope angle of 0.3�, as shown in Fig. 13–19. If the flow depth is measured 
to be 0.52 m, determine the flow rate of water through the channel. What 
would your answer be if the bottom angle were 1�? 

SOLUTION  Water is flowing in a weedy trapezoidal channel of given dimen-
sions. The flow rate corresponding to a measured value of flow depth is to 
be determined. 
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is constant. 
3 The roughness of the wetted surface of the channel and thus the friction 
coefficient are constant.
Properties  The Manning coefficient for an open channel with weedy surfaces 
is n � 0.030.
Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 
channel are

 Ac 5yab 1
y

tan u
b 5 (0.52 m)a0.8 m 1

0.52 m

tan 608
b 50.5721 m2

 p 5b 1
2y

sin u
50.8 m 1

2 30.52 m

sin 608
52.001 m

 Rh 5
Ac

p
5

0.5721 m2

2.991 m
50.2859 m

The bottom slope of the channel is

S0 5 tan a 5 tan 0.38 50.005236

y � 0.52 m

� � 60°

b � 0.8 m

FIGURE 13–19
Schematic for Example 13–2.
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 例題 13-3　　矩形渠道的高度

水在一個粗製混凝土矩形渠道 (其底部寬 1.2 m) 中輸送，流率為 

1.5 m3/s。地形使渠道底面每 300 m 長下降 0.6 m，試求在均勻流

條件下渠道的最小高度 (圖 13-20)。假如底面是每 300 m 長度下降 

0.3 m，你的答案會是什麼呢？

解答：水在一個已知底面寬度的矩形粗製混凝土渠道中流動。要

決定對應一個指定流率的最小渠道高度。

假設：1. 流動是穩定而均勻的。2. 底面斜率是常數。3. 渠道溼邊

的粗糙度，從而摩擦因子，是常數。

性質：一個具有粗製混凝土表面的明渠的曼寧係數是 n=0.014。

解析：渠道的截面積、周長與水力半徑為
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b � 1.2 m

V � 1.5 m3/s
.

FIGURE 13–20
Schematic for Example 13–3.

Then the flow rate through the channel is determined from the Manning 
equation to be

V
#
5

a
n

 AcR
2/3
h S1/2

0 5
1 m1/3/s

0.030
(0.5721 m2)(0.2859 m)2/3(0.005236)1/2 50.60 m3/s

The flow rate for a bottom angle of 1� is determined by using S0 � tan 
� � tan 1� � 0.01746 in the last relation. It gives V

#
 � 1.1 m3/s.

Discussion  Note that the flow rate is a strong function of the bottom angle. 
Also, there is considerable uncertainty in the value of the Manning coef-
ficient, and thus in the flow rate calculated. A 10 percent uncertainty in n 
results in a 10 percent uncertainty in the flow rate. Final answers are there-
fore given to only two significant digits.

EXAMPLE 13–3    The Height of a Rectangular Channel

Water is to be transported in an unfinished-concrete rectangular channel 
with a bottom width of 1.2 m at a rate of 1.5 m3/s. The terrain is such that 
the channel bottom drops 0.6 m per 300 m length. Determine the minimum 
height of the channel under uniform-flow conditions (Fig. 13–20). What 
would your answer be if the bottom drop is just 0.3 m per 300 m length?

SOLUTION  Water is flowing in an unfinished-concrete rectangular channel 
with a specified bottom width. The minimum channel height corresponding 
to a specified flow rate is to be determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 
channel are

Ac 5 by 5 (1.2 m)y  p 5 b 1 2y 5 (1.2 m) 1 2y  Rh 5
Ac

p
5

1.2y

1.2 1 2y

The bottom slope of the channel is S0 � 0.6/300 � 0.002. Using the Manning 
equation, the flow rate through the channel is expressed as

 V
#
5

a
n

AcR
2/3
h S1/2

0

 1.5 m3/s 5
1 m1/3/s

0.014
 (1.2y m2)a 1.2y

1.2 1 2y
 mb

2/3

(0.002)1/2

which is a nonlinear equation in y. Using an equation solver such as EES or 
an itirative approach, the flow depth is determined to be

y 5 0.799 m

If the bottom drop were just 0.3 m per 300 m length, the bottom slope 
would be S0 � 0.001, and the flow depth would be y � 1.05 m.
Discussion  Note that y is the flow depth, and thus this is the minimum 
value for the channel height. Also, there is considerable uncertainty in the 
value of the Manning coefficient n, and this should be considered when 
deciding the height of the channel to be built.
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渠道的底面斜率是 S0 =0.6/300=0.002。使用曼寧方程式，通過渠道的流率被表示為

741
CHAPTER 13

y

b � 1.2 m

V � 1.5 m3/s
.

FIGURE 13–20
Schematic for Example 13–3.

Then the flow rate through the channel is determined from the Manning 
equation to be

V
#
5

a
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2/3
h S1/2

0 5
1 m1/3/s

0.030
(0.5721 m2)(0.2859 m)2/3(0.005236)1/2 50.60 m3/s

The flow rate for a bottom angle of 1� is determined by using S0 � tan 
� � tan 1� � 0.01746 in the last relation. It gives V

#
 � 1.1 m3/s.

Discussion  Note that the flow rate is a strong function of the bottom angle. 
Also, there is considerable uncertainty in the value of the Manning coef-
ficient, and thus in the flow rate calculated. A 10 percent uncertainty in n 
results in a 10 percent uncertainty in the flow rate. Final answers are there-
fore given to only two significant digits.

EXAMPLE 13–3    The Height of a Rectangular Channel

Water is to be transported in an unfinished-concrete rectangular channel 
with a bottom width of 1.2 m at a rate of 1.5 m3/s. The terrain is such that 
the channel bottom drops 0.6 m per 300 m length. Determine the minimum 
height of the channel under uniform-flow conditions (Fig. 13–20). What 
would your answer be if the bottom drop is just 0.3 m per 300 m length?

SOLUTION  Water is flowing in an unfinished-concrete rectangular channel 
with a specified bottom width. The minimum channel height corresponding 
to a specified flow rate is to be determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 
channel are

Ac 5 by 5 (1.2 m)y  p 5 b 1 2y 5 (1.2 m) 1 2y  Rh 5
Ac

p
5

1.2y

1.2 1 2y

The bottom slope of the channel is S0 � 0.6/300 � 0.002. Using the Manning 
equation, the flow rate through the channel is expressed as

 V
#
5

a
n
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2/3
h S1/2

0

 1.5 m3/s 5
1 m1/3/s

0.014
 (1.2y m2)a 1.2y

1.2 1 2y
 mb

2/3

(0.002)1/2

which is a nonlinear equation in y. Using an equation solver such as EES or 
an itirative approach, the flow depth is determined to be

y 5 0.799 m

If the bottom drop were just 0.3 m per 300 m length, the bottom slope 
would be S0 � 0.001, and the flow depth would be y � 1.05 m.
Discussion  Note that y is the flow depth, and thus this is the minimum 
value for the channel height. Also, there is considerable uncertainty in the 
value of the Manning coefficient n, and this should be considered when 
deciding the height of the channel to be built.
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這是 y 的一個非線性方程式。使用方程式求解器，例如 EES 或用疊代法，解出的流動深度是 
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FIGURE 13–20
Schematic for Example 13–3.

Then the flow rate through the channel is determined from the Manning 
equation to be

V
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h S1/2

0 5
1 m1/3/s

0.030
(0.5721 m2)(0.2859 m)2/3(0.005236)1/2 50.60 m3/s

The flow rate for a bottom angle of 1� is determined by using S0 � tan 
� � tan 1� � 0.01746 in the last relation. It gives V

#
 � 1.1 m3/s.

Discussion  Note that the flow rate is a strong function of the bottom angle. 
Also, there is considerable uncertainty in the value of the Manning coef-
ficient, and thus in the flow rate calculated. A 10 percent uncertainty in n 
results in a 10 percent uncertainty in the flow rate. Final answers are there-
fore given to only two significant digits.

EXAMPLE 13–3    The Height of a Rectangular Channel

Water is to be transported in an unfinished-concrete rectangular channel 
with a bottom width of 1.2 m at a rate of 1.5 m3/s. The terrain is such that 
the channel bottom drops 0.6 m per 300 m length. Determine the minimum 
height of the channel under uniform-flow conditions (Fig. 13–20). What 
would your answer be if the bottom drop is just 0.3 m per 300 m length?

SOLUTION  Water is flowing in an unfinished-concrete rectangular channel 
with a specified bottom width. The minimum channel height corresponding 
to a specified flow rate is to be determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 
channel are

Ac 5 by 5 (1.2 m)y  p 5 b 1 2y 5 (1.2 m) 1 2y  Rh 5
Ac

p
5

1.2y

1.2 1 2y

The bottom slope of the channel is S0 � 0.6/300 � 0.002. Using the Manning 
equation, the flow rate through the channel is expressed as
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a
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 1.5 m3/s 5
1 m1/3/s

0.014
 (1.2y m2)a 1.2y

1.2 1 2y
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which is a nonlinear equation in y. Using an equation solver such as EES or 
an itirative approach, the flow depth is determined to be

y 5 0.799 m

If the bottom drop were just 0.3 m per 300 m length, the bottom slope 
would be S0 � 0.001, and the flow depth would be y � 1.05 m.
Discussion  Note that y is the flow depth, and thus this is the minimum 
value for the channel height. Also, there is considerable uncertainty in the 
value of the Manning coefficient n, and this should be considered when 
deciding the height of the channel to be built.
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如果底面每 300 m 長下降 0.3 m，底面斜率是 S0 =0.001，且流動深度是 y=1.05 m。

討論：注意 y 是流動深度，因此這是渠道高度的最小值。同時曼寧係數 n 有可觀的不確定性，在決

定建造渠道高度時必須被考慮。

圖 13-20　例題 13-3 的示意圖。
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FIGURE 13–20
Schematic for Example 13–3.

Then the flow rate through the channel is determined from the Manning 
equation to be
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The flow rate for a bottom angle of 1� is determined by using S0 � tan 
� � tan 1� � 0.01746 in the last relation. It gives V

#
 � 1.1 m3/s.

Discussion  Note that the flow rate is a strong function of the bottom angle. 
Also, there is considerable uncertainty in the value of the Manning coef-
ficient, and thus in the flow rate calculated. A 10 percent uncertainty in n 
results in a 10 percent uncertainty in the flow rate. Final answers are there-
fore given to only two significant digits.

EXAMPLE 13–3    The Height of a Rectangular Channel

Water is to be transported in an unfinished-concrete rectangular channel 
with a bottom width of 1.2 m at a rate of 1.5 m3/s. The terrain is such that 
the channel bottom drops 0.6 m per 300 m length. Determine the minimum 
height of the channel under uniform-flow conditions (Fig. 13–20). What 
would your answer be if the bottom drop is just 0.3 m per 300 m length?

SOLUTION  Water is flowing in an unfinished-concrete rectangular channel 
with a specified bottom width. The minimum channel height corresponding 
to a specified flow rate is to be determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 
channel are

Ac 5 by 5 (1.2 m)y  p 5 b 1 2y 5 (1.2 m) 1 2y  Rh 5
Ac

p
5
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1.2 1 2y

The bottom slope of the channel is S0 � 0.6/300 � 0.002. Using the Manning 
equation, the flow rate through the channel is expressed as
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1.2 1 2y
 mb

2/3

(0.002)1/2

which is a nonlinear equation in y. Using an equation solver such as EES or 
an itirative approach, the flow depth is determined to be

y 5 0.799 m

If the bottom drop were just 0.3 m per 300 m length, the bottom slope 
would be S0 � 0.001, and the flow depth would be y � 1.05 m.
Discussion  Note that y is the flow depth, and thus this is the minimum 
value for the channel height. Also, there is considerable uncertainty in the 
value of the Manning coefficient n, and this should be considered when 
deciding the height of the channel to be built.
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 例題 13-4　　有非均勻粗糙度的渠道

水在一個渠道中流動，其底面斜率是 

0.003，且其截面積示於圖 13-21。圖中也

給出了不同次區域的尺寸與曼寧係數。試

求通過渠道的流率與渠道的等效曼寧係

數。

解答：水流過一個有不均勻表面特性的渠

道。要決定流率與等效曼寧係數。

假設：1. 流動是穩定且均勻的。2. 底面斜

率是常數。3. 沿著渠道方向的曼寧係數不會改變。

圖 13-21　例題 13-4 的示意圖。
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EXAMPLE 13–4    Channels with Nonuniform Roughness

Water flows in a channel whose bottom slope is 0.003 and whose cross sec-
tion is shown in Fig. 13–21. The dimensions and the Manning coefficients 
for the surfaces of different subsections are also given on the figure. Deter-
mine the flow rate through the channel and the effective Manning coefficient 
for the channel.

SOLUTION  Water is flowing through a channel with nonuniform surface 
properties. The flow rate and the effective Manning coefficient are to be 
determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The Manning coefficients do not vary along the channel.
Analysis  The channel involves two parts with different roughnesses, and 
thus it is appropriate to divide the channel into two subsections as indi-
cated in Fig. 13–21. The flow rate for each subsection is determined from 
the Manning equation, and the total flow rate is determined by adding 
them up.
 The side length of the triangular channel is s 5 !32 1 32 5 4.243 m. Then 
the flow area, perimeter, and hydraulic radius for each subsection and the 
entire channel become

 Subsection 1:

 Ac1 521 m2  p1 510.486 m  Rh1 5
Ac1

p1
5

21 m2

10.486 m
52.00 m 

 Subsection 2: 

 Ac2 516 m2  p2 510 m  Rh2 5
Ac2

p2
5

16 m2

10 m
51.60 m

 Entire channel:

 Ac 537 m2  p 520.486 m  Rh 5
Ac

p
5

37 m2

20.486 m
51.806 m

Using the Manning equation for each subsection, the total flow rate through 
the channel is determined to be

 V
#
5V

#
1 1V

#
2 5

a
n1

Ac1R
2/3
h1 S1/2

0 1
a
n2

Ac2R
2/3
h2 S1/2

0

 5 (1 m1/3/s) c (21 m2)(2 m)2/3

0.030
1

(16 m2)(1.60 m)2/3

0.050
d (0.003)1/2

 584.8 m3/s > 85 m3/s

6 m

3 m

2 m

8 m

n2 � 0.050
n1 � 0.030 s

1 2

FIGURE 13–21
Schematic for Example 13–4.
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解析：渠道包含粗糙度不同的兩個部分，因此將渠道區分成兩個次區域，如圖 13-21 所示，是適當

的。每個次區域的流率可以用曼寧方程式決定，而總流率可以將它們加總來決定。

三角形渠道的邊長是 s = 32 +32 =4.243 m，然後每個次區域及整個渠道的流動面積、周長及

水力半徑變成：

次區域 1：
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EXAMPLE 13–4    Channels with Nonuniform Roughness

Water flows in a channel whose bottom slope is 0.003 and whose cross sec-
tion is shown in Fig. 13–21. The dimensions and the Manning coefficients 
for the surfaces of different subsections are also given on the figure. Deter-
mine the flow rate through the channel and the effective Manning coefficient 
for the channel.

SOLUTION  Water is flowing through a channel with nonuniform surface 
properties. The flow rate and the effective Manning coefficient are to be 
determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The Manning coefficients do not vary along the channel.
Analysis  The channel involves two parts with different roughnesses, and 
thus it is appropriate to divide the channel into two subsections as indi-
cated in Fig. 13–21. The flow rate for each subsection is determined from 
the Manning equation, and the total flow rate is determined by adding 
them up.
 The side length of the triangular channel is s 5 !32 1 32 5 4.243 m. Then 
the flow area, perimeter, and hydraulic radius for each subsection and the 
entire channel become

 Subsection 1:

 Ac1 521 m2  p1 510.486 m  Rh1 5
Ac1

p1
5

21 m2

10.486 m
52.00 m 

 Subsection 2: 
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p2
5

16 m2
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 Entire channel:

 Ac 537 m2  p 520.486 m  Rh 5
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20.486 m
51.806 m

Using the Manning equation for each subsection, the total flow rate through 
the channel is determined to be
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FIGURE 13–21
Schematic for Example 13–4.

725-786_cengel_ch13.indd   742 7/2/13   6:57 PM

次區域 2：

742
OPEN-CHANNEL FLOW

EXAMPLE 13–4    Channels with Nonuniform Roughness

Water flows in a channel whose bottom slope is 0.003 and whose cross sec-
tion is shown in Fig. 13–21. The dimensions and the Manning coefficients 
for the surfaces of different subsections are also given on the figure. Deter-
mine the flow rate through the channel and the effective Manning coefficient 
for the channel.

SOLUTION  Water is flowing through a channel with nonuniform surface 
properties. The flow rate and the effective Manning coefficient are to be 
determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The Manning coefficients do not vary along the channel.
Analysis  The channel involves two parts with different roughnesses, and 
thus it is appropriate to divide the channel into two subsections as indi-
cated in Fig. 13–21. The flow rate for each subsection is determined from 
the Manning equation, and the total flow rate is determined by adding 
them up.
 The side length of the triangular channel is s 5 !32 1 32 5 4.243 m. Then 
the flow area, perimeter, and hydraulic radius for each subsection and the 
entire channel become

 Subsection 1:

 Ac1 521 m2  p1 510.486 m  Rh1 5
Ac1

p1
5

21 m2

10.486 m
52.00 m 

 Subsection 2: 

 Ac2 516 m2  p2 510 m  Rh2 5
Ac2

p2
5

16 m2

10 m
51.60 m

 Entire channel:

 Ac 537 m2  p 520.486 m  Rh 5
Ac

p
5

37 m2

20.486 m
51.806 m

Using the Manning equation for each subsection, the total flow rate through 
the channel is determined to be
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1

(16 m2)(1.60 m)2/3

0.050
d (0.003)1/2

 584.8 m3/s > 85 m3/s
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8 m

n2 � 0.050
n1 � 0.030 s

1 2

FIGURE 13–21
Schematic for Example 13–4.
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整個渠道：

742
OPEN-CHANNEL FLOW

EXAMPLE 13–4    Channels with Nonuniform Roughness

Water flows in a channel whose bottom slope is 0.003 and whose cross sec-
tion is shown in Fig. 13–21. The dimensions and the Manning coefficients 
for the surfaces of different subsections are also given on the figure. Deter-
mine the flow rate through the channel and the effective Manning coefficient 
for the channel.

SOLUTION  Water is flowing through a channel with nonuniform surface 
properties. The flow rate and the effective Manning coefficient are to be 
determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The Manning coefficients do not vary along the channel.
Analysis  The channel involves two parts with different roughnesses, and 
thus it is appropriate to divide the channel into two subsections as indi-
cated in Fig. 13–21. The flow rate for each subsection is determined from 
the Manning equation, and the total flow rate is determined by adding 
them up.
 The side length of the triangular channel is s 5 !32 1 32 5 4.243 m. Then 
the flow area, perimeter, and hydraulic radius for each subsection and the 
entire channel become

 Subsection 1:

 Ac1 521 m2  p1 510.486 m  Rh1 5
Ac1

p1
5

21 m2

10.486 m
52.00 m 

 Subsection 2: 

 Ac2 516 m2  p2 510 m  Rh2 5
Ac2

p2
5

16 m2

10 m
51.60 m

 Entire channel:

 Ac 537 m2  p 520.486 m  Rh 5
Ac

p
5

37 m2

20.486 m
51.806 m

Using the Manning equation for each subsection, the total flow rate through 
the channel is determined to be
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d (0.003)1/2

 584.8 m3/s > 85 m3/s

6 m
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2 m

8 m

n2 � 0.050
n1 � 0.030 s

1 2

FIGURE 13–21
Schematic for Example 13–4.
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對每個次區域使用曼寧方程式，通過流道的總流率被決定為

742
OPEN-CHANNEL FLOW

EXAMPLE 13–4    Channels with Nonuniform Roughness

Water flows in a channel whose bottom slope is 0.003 and whose cross sec-
tion is shown in Fig. 13–21. The dimensions and the Manning coefficients 
for the surfaces of different subsections are also given on the figure. Deter-
mine the flow rate through the channel and the effective Manning coefficient 
for the channel.

SOLUTION  Water is flowing through a channel with nonuniform surface 
properties. The flow rate and the effective Manning coefficient are to be 
determined.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The Manning coefficients do not vary along the channel.
Analysis  The channel involves two parts with different roughnesses, and 
thus it is appropriate to divide the channel into two subsections as indi-
cated in Fig. 13–21. The flow rate for each subsection is determined from 
the Manning equation, and the total flow rate is determined by adding 
them up.
 The side length of the triangular channel is s 5 !32 1 32 5 4.243 m. Then 
the flow area, perimeter, and hydraulic radius for each subsection and the 
entire channel become

 Subsection 1:

 Ac1 521 m2  p1 510.486 m  Rh1 5
Ac1

p1
5

21 m2

10.486 m
52.00 m 

 Subsection 2: 

 Ac2 516 m2  p2 510 m  Rh2 5
Ac2

p2
5

16 m2

10 m
51.60 m

 Entire channel:

 Ac 537 m2  p 520.486 m  Rh 5
Ac

p
5

37 m2

20.486 m
51.806 m

Using the Manning equation for each subsection, the total flow rate through 
the channel is determined to be
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d (0.003)1/2

 584.8 m3/s > 85 m3/s
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n2 � 0.050
n1 � 0.030 s
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FIGURE 13–21
Schematic for Example 13–4.
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知道總流率，整個渠道的等效曼寧係數可以用曼寧方程式決定，

743
CHAPTER 13

Knowing the total flow rate, the effective Manning coefficient for the entire 
channel is determined from the Manning equation,

neff 5
aAcR

2/3
h S 1/2

0

V
# 5

(1 m1/3/s)(37 m2)(1.806 m)2/3(0.003)1/2

84.8 m3/s
50.035

Discussion  The effective Manning coefficient neff of the channel turns out to 
lie between the two n values, as expected. The weighted average of the Man-
ning coefficient of the channel is navg � (n1p1 � n2p2)/p � 0.040, which is 
quite different than neff. Therefore, using a weighted average Manning coeffi-
cient for the entire channel may be tempting, but it would not be so accurate.

13–6 ■  BEST HYDRAULIC CROSS SECTIONS
Open-channel systems are usually designed to transport a liquid to a loca-
tion at a lower elevation at a specified rate under the influence of gravity at 
the lowest possible cost. Noting that no energy input is required, the cost of 
an open-channel system consists primarily of the initial construction cost, 
which is proportional to the physical size of the system. Therefore, for a 
given channel length, the perimeter of the channel is representative of the 
system cost, and it should be kept to a minimum in order to minimize the 
size and thus the cost of the system.
 From another perspective, resistance to flow is due to wall shear stress �w 
and the wall area, which is equivalent to the wetted perimeter per unit chan-
nel length. Therefore, for a given flow cross-sectional area Ac, the smaller 
the wetted perimeter p, the smaller the resistance force, and thus the larger 
the average velocity and the flow rate.
 From yet another perspective, for a specified channel geometry with a spec-
ified bottom slope S0 and surface lining (and thus the roughness coefficient n), 
the flow velocity is given by the Manning formula as V 5aR2/3

h S1/2
0 /n. There-

fore, the flow velocity increases with the hydraulic radius, and the hydraulic 
radius must be maximized (and thus the perimeter must be minimized since 
Rh � Ac/p) in order to maximize the average flow velocity or the flow rate 
per unit cross-sectional area. Thus we conclude the following:

The best hydraulic cross section for an open channel is the one with the 
maximum hydraulic radius or, equivalently, the one with the minimum wetted 
perimeter for a specified cross-sectional area.

 The shape with the minimal perimeter per unit area is a circle. Therefore, 
on the basis of minimum flow resistance, the best cross section for an open 
channel is a semicircular one (Fig. 13–22). However, it is usually cheaper to 
construct an open channel with straight sides (such as channels with trap-
ezoidal or rectangular cross sections) instead of semicircular ones, and the 
general shape of the channel may be specified a priori. Thus it makes sense 
to analyze each geometric shape separately for the best cross section.
 As a motivational example, consider a rectangular channel of finished 
concrete (n � 0.012) of width b and flow depth y with a bottom slope of 1� 
(Fig. 13–23). To determine the effects of the aspect ratio y/b on the hydraulic 
radius Rh and the flow rate V

#
 for a cross-sectional area of 1 m2, Rh and V

#
 are 

R
y

FIGURE 13–22
The best hydraulic cross section for 

an open channel is a semicircular one 
since it has the minimum wetted 

perimeter for a specified cross-
sectional area, and thus the minimum 

flow resistance.

y

b

FIGURE 13–23
A rectangular open channel of width 

b and flow depth y. For a given 
cross-sectional area, the highest 
flow rate occurs when y � b/2.
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討論：渠道的等效曼寧係數 neff 的結果介於兩個 n 值之間，正如預期。渠道的曼寧係數的加權平均

是 navg = (n1P1 +n2P2)/P=0.040，其值與 neff 相當不同。因此，使用一個加權的平均曼寧係數給整個

渠道雖然很吸引人，但卻不是那麼正確。

13-6　最好的水力截面積

明渠系統通常是在重力的影響下所設計出的，以最低可能的成本在一個指定的

流率下來輸送液體到一個較低高度的地方。注意不需要輸入能量，明渠系統的成本

主要包含的是起始建造成本，因此正比於系統的物理尺寸。對於一個給定的渠道長

度，渠道的周長代表系統的成本，應該被維持在一個最小值，目的是最小化系統的

尺寸，從而最小化系統的成本。
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從另一個觀點來看，流動的阻力是由於壁剪應力 tw 與壁面積，其是等於每單

位渠道長度的溼邊周長。因此對一個給定的流動截面積 Ac，溼邊周長越小，阻力

越小，從而使平均速度與流率越大。

再從另一個觀點來看，對一個指定的渠道幾何，具有指定的底面斜率 S0 與表

面襯裡 (因此是粗糙度係數 n)，流動速度是由曼寧公式 
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CHAPTER 13

Knowing the total flow rate, the effective Manning coefficient for the entire 
channel is determined from the Manning equation,

neff 5
aAcR

2/3
h S 1/2

0

V
# 5

(1 m1/3/s)(37 m2)(1.806 m)2/3(0.003)1/2

84.8 m3/s
50.035

Discussion  The effective Manning coefficient neff of the channel turns out to 
lie between the two n values, as expected. The weighted average of the Man-
ning coefficient of the channel is navg � (n1p1 � n2p2)/p � 0.040, which is 
quite different than neff. Therefore, using a weighted average Manning coeffi-
cient for the entire channel may be tempting, but it would not be so accurate.

13–6 ■  BEST HYDRAULIC CROSS SECTIONS
Open-channel systems are usually designed to transport a liquid to a loca-
tion at a lower elevation at a specified rate under the influence of gravity at 
the lowest possible cost. Noting that no energy input is required, the cost of 
an open-channel system consists primarily of the initial construction cost, 
which is proportional to the physical size of the system. Therefore, for a 
given channel length, the perimeter of the channel is representative of the 
system cost, and it should be kept to a minimum in order to minimize the 
size and thus the cost of the system.
 From another perspective, resistance to flow is due to wall shear stress �w 
and the wall area, which is equivalent to the wetted perimeter per unit chan-
nel length. Therefore, for a given flow cross-sectional area Ac, the smaller 
the wetted perimeter p, the smaller the resistance force, and thus the larger 
the average velocity and the flow rate.
 From yet another perspective, for a specified channel geometry with a spec-
ified bottom slope S0 and surface lining (and thus the roughness coefficient n), 
the flow velocity is given by the Manning formula as V 5aR2/3

h S1/2
0 /n. There-

fore, the flow velocity increases with the hydraulic radius, and the hydraulic 
radius must be maximized (and thus the perimeter must be minimized since 
Rh � Ac/p) in order to maximize the average flow velocity or the flow rate 
per unit cross-sectional area. Thus we conclude the following:

The best hydraulic cross section for an open channel is the one with the 
maximum hydraulic radius or, equivalently, the one with the minimum wetted 
perimeter for a specified cross-sectional area.

 The shape with the minimal perimeter per unit area is a circle. Therefore, 
on the basis of minimum flow resistance, the best cross section for an open 
channel is a semicircular one (Fig. 13–22). However, it is usually cheaper to 
construct an open channel with straight sides (such as channels with trap-
ezoidal or rectangular cross sections) instead of semicircular ones, and the 
general shape of the channel may be specified a priori. Thus it makes sense 
to analyze each geometric shape separately for the best cross section.
 As a motivational example, consider a rectangular channel of finished 
concrete (n � 0.012) of width b and flow depth y with a bottom slope of 1� 
(Fig. 13–23). To determine the effects of the aspect ratio y/b on the hydraulic 
radius Rh and the flow rate V

#
 for a cross-sectional area of 1 m2, Rh and V

#
 are 

R
y

FIGURE 13–22
The best hydraulic cross section for 

an open channel is a semicircular one 
since it has the minimum wetted 

perimeter for a specified cross-
sectional area, and thus the minimum 

flow resistance.

y

b

FIGURE 13–23
A rectangular open channel of width 

b and flow depth y. For a given 
cross-sectional area, the highest 
flow rate occurs when y � b/2.
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 給定。因此

流速隨水力半徑增加，為了最大化每單位截面積的平均流速與流率，水力半徑必須

被最大化 (因此周長必須被極小化，因為 Rh =Ac/p)。我們得到以下的結論：

明渠的最好的水力截面是有最大水力半徑的那一個或等效地，對一個指定的

截面積具有最小的溼邊周長的那一個。

每單位面積周長最小的形狀是圓形。因此，在最小流動阻

力的基礎下，明渠的最好的截面是半圓形 (圖 13-22)。然而，建

造一個具有平直邊牆的明渠 (例如梯形或矩形截面的渠道) 取代

半圓形的渠道通常比較便宜，並且渠道的一般形狀可能會被事

先指定。因此對於最好的截面，分別地分析每一種幾何形狀是

合理的。

作為一個啟發的例子，考慮一個精製混凝土 (n =0.012) 的

矩形渠道，其寬度 b，流動深度 y，底面斜率是 1° (圖 13-23)。

對於一個 1 m2 的截面積，要決定深寬比 y/b 對水力半徑 Rh 與流

率  
⋅
V  的影響，Rh 與 

⋅
V  用曼寧公式計算。結果被表列在表 13-2 並

畫在圖 13-24 中，深寬比的範圍從 0.1 到 5。從表與圖中，我們

觀察到流率 
⋅
V  隨著深寬比 y/b 增加而增加，在 y/b =0.5 時達到

一個最大值，然後開始減小 ( 
⋅
V  的數值也可被解釋為用 m/s 表示

的流速，因為 Ac =1 m2)。我們看到水力半徑有相同的趨勢，但

是溼邊周長 p 則有相反的趨勢。這個結果證實了對一個給定的

形狀最好的截面是有最大水力半徑的那一個，或等效地，有最

小的溼邊周長的那一個。

矩形渠道

考慮液體在一個矩形截面，寬度 b 且流動深度 y 的明渠中的流動。在一個流動

段的截面積與溼邊周長為

 Ac =yb　與　p= b+2y (13-45)

從式 (13-45) 的第一個關係式解出 b，並將其代入第二個關係式中得

圖 13-23　一個寬度 b、流動深度 h 
的矩形明渠。對於一個給定的截面

積，最高流率發生在當 y=b/2 時。
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Knowing the total flow rate, the effective Manning coefficient for the entire 
channel is determined from the Manning equation,

neff 5
aAcR

2/3
h S 1/2

0

V
# 5

(1 m1/3/s)(37 m2)(1.806 m)2/3(0.003)1/2

84.8 m3/s
50.035

Discussion  The effective Manning coefficient neff of the channel turns out to 
lie between the two n values, as expected. The weighted average of the Man-
ning coefficient of the channel is navg � (n1p1 � n2p2)/p � 0.040, which is 
quite different than neff. Therefore, using a weighted average Manning coeffi-
cient for the entire channel may be tempting, but it would not be so accurate.

13–6 ■  BEST HYDRAULIC CROSS SECTIONS
Open-channel systems are usually designed to transport a liquid to a loca-
tion at a lower elevation at a specified rate under the influence of gravity at 
the lowest possible cost. Noting that no energy input is required, the cost of 
an open-channel system consists primarily of the initial construction cost, 
which is proportional to the physical size of the system. Therefore, for a 
given channel length, the perimeter of the channel is representative of the 
system cost, and it should be kept to a minimum in order to minimize the 
size and thus the cost of the system.
 From another perspective, resistance to flow is due to wall shear stress �w 
and the wall area, which is equivalent to the wetted perimeter per unit chan-
nel length. Therefore, for a given flow cross-sectional area Ac, the smaller 
the wetted perimeter p, the smaller the resistance force, and thus the larger 
the average velocity and the flow rate.
 From yet another perspective, for a specified channel geometry with a spec-
ified bottom slope S0 and surface lining (and thus the roughness coefficient n), 
the flow velocity is given by the Manning formula as V 5aR2/3

h S1/2
0 /n. There-

fore, the flow velocity increases with the hydraulic radius, and the hydraulic 
radius must be maximized (and thus the perimeter must be minimized since 
Rh � Ac/p) in order to maximize the average flow velocity or the flow rate 
per unit cross-sectional area. Thus we conclude the following:

The best hydraulic cross section for an open channel is the one with the 
maximum hydraulic radius or, equivalently, the one with the minimum wetted 
perimeter for a specified cross-sectional area.

 The shape with the minimal perimeter per unit area is a circle. Therefore, 
on the basis of minimum flow resistance, the best cross section for an open 
channel is a semicircular one (Fig. 13–22). However, it is usually cheaper to 
construct an open channel with straight sides (such as channels with trap-
ezoidal or rectangular cross sections) instead of semicircular ones, and the 
general shape of the channel may be specified a priori. Thus it makes sense 
to analyze each geometric shape separately for the best cross section.
 As a motivational example, consider a rectangular channel of finished 
concrete (n � 0.012) of width b and flow depth y with a bottom slope of 1� 
(Fig. 13–23). To determine the effects of the aspect ratio y/b on the hydraulic 
radius Rh and the flow rate V

#
 for a cross-sectional area of 1 m2, Rh and V

#
 are 

R
y

FIGURE 13–22
The best hydraulic cross section for 

an open channel is a semicircular one 
since it has the minimum wetted 

perimeter for a specified cross-
sectional area, and thus the minimum 

flow resistance.

y

b

FIGURE 13–23
A rectangular open channel of width 

b and flow depth y. For a given 
cross-sectional area, the highest 
flow rate occurs when y � b/2.
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圖 13-22　一個明渠的最好的水力
截面是一個半圓形，因為對於一個

指定的截面積，其有最小的溼邊周

長，從而有最小的流動阻力。
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Knowing the total flow rate, the effective Manning coefficient for the entire 
channel is determined from the Manning equation,

neff 5
aAcR

2/3
h S 1/2

0

V
# 5

(1 m1/3/s)(37 m2)(1.806 m)2/3(0.003)1/2

84.8 m3/s
50.035

Discussion  The effective Manning coefficient neff of the channel turns out to 
lie between the two n values, as expected. The weighted average of the Man-
ning coefficient of the channel is navg � (n1p1 � n2p2)/p � 0.040, which is 
quite different than neff. Therefore, using a weighted average Manning coeffi-
cient for the entire channel may be tempting, but it would not be so accurate.

13–6 ■  BEST HYDRAULIC CROSS SECTIONS
Open-channel systems are usually designed to transport a liquid to a loca-
tion at a lower elevation at a specified rate under the influence of gravity at 
the lowest possible cost. Noting that no energy input is required, the cost of 
an open-channel system consists primarily of the initial construction cost, 
which is proportional to the physical size of the system. Therefore, for a 
given channel length, the perimeter of the channel is representative of the 
system cost, and it should be kept to a minimum in order to minimize the 
size and thus the cost of the system.
 From another perspective, resistance to flow is due to wall shear stress �w 
and the wall area, which is equivalent to the wetted perimeter per unit chan-
nel length. Therefore, for a given flow cross-sectional area Ac, the smaller 
the wetted perimeter p, the smaller the resistance force, and thus the larger 
the average velocity and the flow rate.
 From yet another perspective, for a specified channel geometry with a spec-
ified bottom slope S0 and surface lining (and thus the roughness coefficient n), 
the flow velocity is given by the Manning formula as V 5aR2/3

h S1/2
0 /n. There-

fore, the flow velocity increases with the hydraulic radius, and the hydraulic 
radius must be maximized (and thus the perimeter must be minimized since 
Rh � Ac/p) in order to maximize the average flow velocity or the flow rate 
per unit cross-sectional area. Thus we conclude the following:

The best hydraulic cross section for an open channel is the one with the 
maximum hydraulic radius or, equivalently, the one with the minimum wetted 
perimeter for a specified cross-sectional area.

 The shape with the minimal perimeter per unit area is a circle. Therefore, 
on the basis of minimum flow resistance, the best cross section for an open 
channel is a semicircular one (Fig. 13–22). However, it is usually cheaper to 
construct an open channel with straight sides (such as channels with trap-
ezoidal or rectangular cross sections) instead of semicircular ones, and the 
general shape of the channel may be specified a priori. Thus it makes sense 
to analyze each geometric shape separately for the best cross section.
 As a motivational example, consider a rectangular channel of finished 
concrete (n � 0.012) of width b and flow depth y with a bottom slope of 1� 
(Fig. 13–23). To determine the effects of the aspect ratio y/b on the hydraulic 
radius Rh and the flow rate V

#
 for a cross-sectional area of 1 m2, Rh and V
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 are 
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y

FIGURE 13–22
The best hydraulic cross section for 

an open channel is a semicircular one 
since it has the minimum wetted 

perimeter for a specified cross-
sectional area, and thus the minimum 
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FIGURE 13–23
A rectangular open channel of width 

b and flow depth y. For a given 
cross-sectional area, the highest 
flow rate occurs when y � b/2.
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深寬比

y/b
渠道寬度

b，m
流動深度

y，m
周長

P，m
水力半徑

Rh，m
流率

⋅
V，m3/s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0
3.0
4.0
5.0

3.162
2.236
1.826
1.581
1.414
1.291
1.195
1.118
1.054
1.000
0.816
0.707
0.577
0.500
0.447

0.316
0.447
0.548
0.632
0.707
0.775
0.837
0.894
0.949
1.000
1.225
1.414
1.732
2.000
2.236

3.795
3.130
2.921
2.846
2.828
2.840
2.869
2.907
2.951
3.000
3.266
3.536
4.041
4.500
4.919

0.264
0.319
0.342
0.351
0.354
0.352
0.349
0.344
0.339
0.333
0.306
0.283
0.247
0.222
0.203

4.53
5.14
5.39
5.48
5.50
5.49
5.45
5.41
5.35
5.29
5.00
4.74
4.34
4.04
3.81

表 13-2　對一個矩形渠道，Ac =1 m2，S0 = tan 1° 與 n =0.012，其水力半徑 Rh 與流率 
 
⋅
V  隨深寬比 y/b 的變化
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OPEN-CHANNEL FLOW

evaluated from the Manning formula. The results are tabulated in Table 13–2 
and plotted in Fig. 13–24 for aspect ratios from 0.1 to 5. We observe from 
this table and the plot that the flow rate V

#
 increases as the flow aspect ratio 

y/b is increased, reaches a maximum at y/b � 0.5, and then starts to decrease 
(the numerical values for V

#
 can also be interpreted as the flow velocities in 

m/s since Ac � 1 m2). We see the same trend for the hydraulic radius, but the 
opposite trend for the wetted perimeter p. These results confirm that the best 
cross section for a given shape is the one with the maximum hydraulic radius, 
or equivalently, the one with the minimum perimeter.

TABLE 13–2

Variation of the hydraulic radius Rh and the flow rate V
#
 with aspect ratio y /b for a 

rectangular channel with Ac � 1 m2, S0 � tan 1�, and n � 0.012

 Aspect Channel Flow  Hydraulic Flow Rate
 Ratio Width Depth Perimeter Radius V

#
,

 y/b b, m y, m p, m Rh, m m3/s

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0
 1.5
 2.0
 3.0
 4.0
 5.0

 3.162 
2.236 
1.826 
1.581 
1.414 
1.291 
1.195 
1.118 
1.054 
1.000 
0.816 
0.707 
0.577 
0.500 
0.447 

0.316
0.447
0.548
0.632
0.707
0.775
0.837
0.894
0.949
1.000
1.225
1.414
1.732
2.000
2.236

 3.795
3.130
2.921
2.846
2.828
2.840
2.869
2.907
2.951
3.000
3.266
3.536
4.041
4.500
4.919

 0.264
0.319
0.342
0.351
0.354
0.352
0.349
0.344
0.339
0.333
0.306
0.283
0.247
0.222
0.203

 4.53
5.14
5.39
5.48
5.50
5.49
5.45
5.41
5.35
5.29
5.00
4.74
4.34
4.04
3.81

    
    
    
    
    
    
    
    
    
    
    
    
    
    

0
3.75

4.15

4.55

4.95

5.35

5.75

1 2 3 4 5

FIGURE 13–24
Variation of the flow rate in a 
rectangular channel with aspect ratio 
r � y/b for Ac � 1 m2 and S0 � tan 1�.
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深寬比 r=y/b

流
率

  ⋅ V
，

m
3 /

s

圖 13-24　一個矩形渠道 (Ac =1 m2 
與 S0 = tan 1°) 的流率隨深寬比 y/b 的
變化。
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives

 
dp

dy
5 2

Ac

y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)

y

�

b

Rh � �
Ac
p

y(b � y/tan �)
b � 2y/sin �

s

FIGURE 13–25
Parameters for a trapezoidal channel.

725-786_cengel_ch13.indd   745 7/2/13   6:57 PM

 (13-46)

現在我們應用準則：對一個給定的截面積，一個明渠的最好的水力截面是有最小的

溼邊周長。取 p 對 y 的微分並維持 Ac 為常數，得到
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives

 
dp

dy
5 2

Ac

y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)

y

�

b

Rh � �
Ac
p

y(b � y/tan �)
b � 2y/sin �

s

FIGURE 13–25
Parameters for a trapezoidal channel.
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令 dp/dy=0 並解出 y，根據最好水力截面準則可以得到

最好水力截面 (矩形渠道)： 
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives

 
dp

dy
5 2

Ac

y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)

y

�

b

Rh � �
Ac
p

y(b � y/tan �)
b � 2y/sin �

s

FIGURE 13–25
Parameters for a trapezoidal channel.
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 (13-48)

因此，一個矩形明渠應該設計成液體高度是渠道寬度的一半，以便在給定截面

積下最小化流阻或最大化流率。這樣也會最小化周長及建造成本。這個結果證實了

從表 13-2 的發現，即 y=b/2 給出最好的截面。

梯形渠道

現在考慮液體在一個梯形截面 (其底面寬度 b，流動深度 

y，且梯形角度從水平面量起是 u) 的明渠中的流動，如圖 13-25 

所示。在一個流動段的截面積與溼邊周長為
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives

 
dp

dy
5 2

Ac

y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)

y
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b

Rh � �
Ac
p

y(b � y/tan �)
b � 2y/sin �

s

FIGURE 13–25
Parameters for a trapezoidal channel.
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives

 
dp

dy
5 2

Ac

y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)

y
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b

Rh � �
Ac
p

y(b � y/tan �)
b � 2y/sin �

s

FIGURE 13–25
Parameters for a trapezoidal channel.
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 (13-49)

從式 (13-49) 的第一個關係式解出 b，並將其代入第二個關係式

中得到
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives

 
dp

dy
5 2

Ac

y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)

y

�

b

Rh � �
Ac
p

y(b � y/tan �)
b � 2y/sin �

s

FIGURE 13–25
Parameters for a trapezoidal channel.
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 (13-50)

在維持 Ac 與 u 為常數下，將 p 對 y 取微分得到
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives
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5 2

b 1 y/tan u
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2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)
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FIGURE 13–25
Parameters for a trapezoidal channel.
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 (13-51)

令 dp/dy=0 且解出 y，對任何指定的梯形角度 u，根據最好水力截面準則可以得到

最好水力截面 (梯形渠道)： 
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives
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5 2
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y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)
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FIGURE 13–25
Parameters for a trapezoidal channel.
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 (13-52)

對於 u =90° 的特別 (矩形渠道)，此關係式簡化成 y=b/2，正如預期。

一個梯形渠道的水力半徑 Rh 可以被表示為
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OPEN-CHANNEL FLOW

For the special case of � � 90� (a rectangular channel), this relation reduces 
to y � b/2, as expected.
 The hydraulic radius Rh for a trapezoidal channel can be expressed as

 Rh 5
Ac

p
5

y(b 1y/tan u )

b 12y/sin u
5

y(b sin u 1y  cos u )

b sin u 12y
 (13–53)

Rearranging Eq. 13–52 as bsin � � 2y(1 � cos �), substituting into Eq. 13–53 
and simplifying, the hydraulic radius for a trapezoidal channel with the best 
cross section becomes

Hydraulic radius for the best cross section:  Rh 5
y

2
 (13–54)

Therefore, the hydraulic radius is half the flow depth for trapezoidal chan-
nels with the best cross section regardless of the trapezoid angle �.
 Similarly, the trapezoid angle for the best hydraulic cross section is deter-
mined by taking the derivative of p (Eq. 13–50) with respect to � while 
holding Ac and y constant, setting dp/d� � 0, and solving the resulting 
equation for �. This gives

Best trapezoid angle: u 5608  (13–55)

Substituting the best trapezoid angle � � 60� into the best hydraulic cross 
section relation y � b sin �/(2 � 2 cos �) gives

Best flow depth for � � 60�: y 5
"3

2
 b (13–56)

Then the length of the side edge of the flow section and the flow area become

  s 5
y

sin 608
5

b"3/2

"3/2
5b (13–57)

  p 53b (13–58)

  Ac 5 ab 1
y

tan u
by 5 ab 1

b"3/2

tan 608
b(b"3/2) 5

3"3

4
 b2 (13–59)

since tan 608 5"3. Therefore, the best cross section for trapezoidal chan-
nels is half of a hexagon (Fig. 13–26). This is not surprising since a hexagon 
closely approximates a circle, and a half-hexagon has the least perimeter per 
unit cross-sectional area of all trapezoidal channels.
 Best hydraulic cross sections for other channel shapes can be determined 
in a similar manner. For example, the best hydraulic cross section for a 
circular channel of diameter D can be shown to be y � D/2.

EXAMPLE 13–5    Best Cross Section of an Open Channel

Water is to be transported at a rate of 2 m3/s in uniform flow in an open 
channel whose surfaces are asphalt lined. The bottom slope is 0.001. Deter-
mine the dimensions of the best cross section if the shape of the channel is 
(a) rectangular and (b) trapezoidal (Fig. 13–27).
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FIGURE 13–26
The best cross section for trapezoidal 
channels is half of a hexagon.
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 (13-53)

重新整理式 (13-52) 成為 bsin u=2y(1−cos u)，代入式 (13-53) 中並簡化，有最好截

面的梯形渠道的水力半徑變成

圖 13-25　梯形渠道的參數。

745
CHAPTER 13

Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are
 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
12y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y
1 2 (13–47)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y � b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle � measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and � constant 
gives

 
dp

dy
5 2

Ac

y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy � 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle � is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2cos u )
 (13–52)
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24 流 體 力 學

 例題 13-5　　一個明渠的最好的截面

水要在一個表面鋪有瀝青的明渠中以流率 2 m3/s 的均勻流形式輸送。底面斜率是 0.001，試求最好

的截面的尺寸，如果渠道是 (a) 矩形與 (b) 梯形 (圖 13-27)。

解答：水要在一個明渠中以指定的流率輸送。要決定矩形與梯形渠道的最好的渠道尺寸。

假設：1. 流動是穩定且均勻的。2. 底面斜率是常數。3. 渠道的溼表面的粗糙度 (即摩擦係數) 是常

數。

性質：瀝青表面的明渠的曼寧係數是 n=0.016。

最好截面的水力半徑： 
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For the special case of � � 90� (a rectangular channel), this relation reduces 
to y � b/2, as expected.
 The hydraulic radius Rh for a trapezoidal channel can be expressed as

 Rh 5
Ac

p
5

y(b 1y/tan u )

b 12y/sin u
5

y(b sin u 1y  cos u )

b sin u 12y
 (13–53)

Rearranging Eq. 13–52 as bsin � � 2y(1 � cos �), substituting into Eq. 13–53 
and simplifying, the hydraulic radius for a trapezoidal channel with the best 
cross section becomes

Hydraulic radius for the best cross section:  Rh 5
y

2
 (13–54)

Therefore, the hydraulic radius is half the flow depth for trapezoidal chan-
nels with the best cross section regardless of the trapezoid angle �.
 Similarly, the trapezoid angle for the best hydraulic cross section is deter-
mined by taking the derivative of p (Eq. 13–50) with respect to � while 
holding Ac and y constant, setting dp/d� � 0, and solving the resulting 
equation for �. This gives

Best trapezoid angle: u 5608  (13–55)

Substituting the best trapezoid angle � � 60� into the best hydraulic cross 
section relation y � b sin �/(2 � 2 cos �) gives

Best flow depth for � � 60�: y 5
"3

2
 b (13–56)

Then the length of the side edge of the flow section and the flow area become

  s 5
y

sin 608
5

b"3/2

"3/2
5b (13–57)

  p 53b (13–58)

  Ac 5 ab 1
y

tan u
by 5 ab 1

b"3/2

tan 608
b(b"3/2) 5

3"3

4
 b2 (13–59)

since tan 608 5"3. Therefore, the best cross section for trapezoidal chan-
nels is half of a hexagon (Fig. 13–26). This is not surprising since a hexagon 
closely approximates a circle, and a half-hexagon has the least perimeter per 
unit cross-sectional area of all trapezoidal channels.
 Best hydraulic cross sections for other channel shapes can be determined 
in a similar manner. For example, the best hydraulic cross section for a 
circular channel of diameter D can be shown to be y � D/2.

EXAMPLE 13–5    Best Cross Section of an Open Channel

Water is to be transported at a rate of 2 m3/s in uniform flow in an open 
channel whose surfaces are asphalt lined. The bottom slope is 0.001. Deter-
mine the dimensions of the best cross section if the shape of the channel is 
(a) rectangular and (b) trapezoidal (Fig. 13–27).
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The best cross section for trapezoidal 
channels is half of a hexagon.
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 (13-54)

因此，有最後截面的梯形渠道不管梯形角度 u 是多少，其水力半徑都是流動深度的

一半。

類似地，最好水力截面的梯形角度是在保持  Ac 與  y  為常數下，取  p  [式  

(13-50)] 對 u 的微分，令 dp/du=0，並對結果方程式求解 u 來決定的。這樣會得到

最好的梯形角度： u =60° (13-55)

將最好的梯形角度 u =60° 代入最好的水力截面關係式 y=bsin u/(2−2 cos u) 得到

給 u =60° 的最好的流動深度： 
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For the special case of � � 90� (a rectangular channel), this relation reduces 
to y � b/2, as expected.
 The hydraulic radius Rh for a trapezoidal channel can be expressed as

 Rh 5
Ac

p
5

y(b 1y/tan u )

b 12y/sin u
5

y(b sin u 1y  cos u )

b sin u 12y
 (13–53)

Rearranging Eq. 13–52 as bsin � � 2y(1 � cos �), substituting into Eq. 13–53 
and simplifying, the hydraulic radius for a trapezoidal channel with the best 
cross section becomes

Hydraulic radius for the best cross section:  Rh 5
y

2
 (13–54)

Therefore, the hydraulic radius is half the flow depth for trapezoidal chan-
nels with the best cross section regardless of the trapezoid angle �.
 Similarly, the trapezoid angle for the best hydraulic cross section is deter-
mined by taking the derivative of p (Eq. 13–50) with respect to � while 
holding Ac and y constant, setting dp/d� � 0, and solving the resulting 
equation for �. This gives

Best trapezoid angle: u 5608  (13–55)

Substituting the best trapezoid angle � � 60� into the best hydraulic cross 
section relation y � b sin �/(2 � 2 cos �) gives

Best flow depth for � � 60�: y 5
"3

2
 b (13–56)

Then the length of the side edge of the flow section and the flow area become

  s 5
y

sin 608
5

b"3/2

"3/2
5b (13–57)

  p 53b (13–58)

  Ac 5 ab 1
y

tan u
by 5 ab 1

b"3/2

tan 608
b(b"3/2) 5

3"3

4
 b2 (13–59)

since tan 608 5"3. Therefore, the best cross section for trapezoidal chan-
nels is half of a hexagon (Fig. 13–26). This is not surprising since a hexagon 
closely approximates a circle, and a half-hexagon has the least perimeter per 
unit cross-sectional area of all trapezoidal channels.
 Best hydraulic cross sections for other channel shapes can be determined 
in a similar manner. For example, the best hydraulic cross section for a 
circular channel of diameter D can be shown to be y � D/2.

EXAMPLE 13–5    Best Cross Section of an Open Channel

Water is to be transported at a rate of 2 m3/s in uniform flow in an open 
channel whose surfaces are asphalt lined. The bottom slope is 0.001. Deter-
mine the dimensions of the best cross section if the shape of the channel is 
(a) rectangular and (b) trapezoidal (Fig. 13–27).
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 (13-56)

因此流動截面的邊牆長度與流動面積變成
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For the special case of � � 90� (a rectangular channel), this relation reduces 
to y � b/2, as expected.
 The hydraulic radius Rh for a trapezoidal channel can be expressed as

 Rh 5
Ac

p
5

y(b 1y/tan u )

b 12y/sin u
5

y(b sin u 1y  cos u )

b sin u 12y
 (13–53)

Rearranging Eq. 13–52 as bsin � � 2y(1 � cos �), substituting into Eq. 13–53 
and simplifying, the hydraulic radius for a trapezoidal channel with the best 
cross section becomes

Hydraulic radius for the best cross section:  Rh 5
y

2
 (13–54)

Therefore, the hydraulic radius is half the flow depth for trapezoidal chan-
nels with the best cross section regardless of the trapezoid angle �.
 Similarly, the trapezoid angle for the best hydraulic cross section is deter-
mined by taking the derivative of p (Eq. 13–50) with respect to � while 
holding Ac and y constant, setting dp/d� � 0, and solving the resulting 
equation for �. This gives

Best trapezoid angle: u 5608  (13–55)

Substituting the best trapezoid angle � � 60� into the best hydraulic cross 
section relation y � b sin �/(2 � 2 cos �) gives

Best flow depth for � � 60�: y 5
"3

2
 b (13–56)

Then the length of the side edge of the flow section and the flow area become

  s 5
y

sin 608
5

b"3/2

"3/2
5b (13–57)

  p 53b (13–58)

  Ac 5 ab 1
y

tan u
by 5 ab 1

b"3/2

tan 608
b(b"3/2) 5

3"3

4
 b2 (13–59)

since tan 608 5"3. Therefore, the best cross section for trapezoidal chan-
nels is half of a hexagon (Fig. 13–26). This is not surprising since a hexagon 
closely approximates a circle, and a half-hexagon has the least perimeter per 
unit cross-sectional area of all trapezoidal channels.
 Best hydraulic cross sections for other channel shapes can be determined 
in a similar manner. For example, the best hydraulic cross section for a 
circular channel of diameter D can be shown to be y � D/2.

EXAMPLE 13–5    Best Cross Section of an Open Channel

Water is to be transported at a rate of 2 m3/s in uniform flow in an open 
channel whose surfaces are asphalt lined. The bottom slope is 0.001. Deter-
mine the dimensions of the best cross section if the shape of the channel is 
(a) rectangular and (b) trapezoidal (Fig. 13–27).
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 (13-57)

 p=3b (13-58)
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For the special case of � � 90� (a rectangular channel), this relation reduces 
to y � b/2, as expected.
 The hydraulic radius Rh for a trapezoidal channel can be expressed as

 Rh 5
Ac

p
5

y(b 1y/tan u )

b 12y/sin u
5

y(b sin u 1y  cos u )

b sin u 12y
 (13–53)

Rearranging Eq. 13–52 as bsin � � 2y(1 � cos �), substituting into Eq. 13–53 
and simplifying, the hydraulic radius for a trapezoidal channel with the best 
cross section becomes

Hydraulic radius for the best cross section:  Rh 5
y

2
 (13–54)

Therefore, the hydraulic radius is half the flow depth for trapezoidal chan-
nels with the best cross section regardless of the trapezoid angle �.
 Similarly, the trapezoid angle for the best hydraulic cross section is deter-
mined by taking the derivative of p (Eq. 13–50) with respect to � while 
holding Ac and y constant, setting dp/d� � 0, and solving the resulting 
equation for �. This gives

Best trapezoid angle: u 5608  (13–55)

Substituting the best trapezoid angle � � 60� into the best hydraulic cross 
section relation y � b sin �/(2 � 2 cos �) gives

Best flow depth for � � 60�: y 5
"3

2
 b (13–56)

Then the length of the side edge of the flow section and the flow area become

  s 5
y

sin 608
5

b"3/2

"3/2
5b (13–57)

  p 53b (13–58)

  Ac 5 ab 1
y

tan u
by 5 ab 1

b"3/2

tan 608
b(b"3/2) 5

3"3

4
 b2 (13–59)

since tan 608 5"3. Therefore, the best cross section for trapezoidal chan-
nels is half of a hexagon (Fig. 13–26). This is not surprising since a hexagon 
closely approximates a circle, and a half-hexagon has the least perimeter per 
unit cross-sectional area of all trapezoidal channels.
 Best hydraulic cross sections for other channel shapes can be determined 
in a similar manner. For example, the best hydraulic cross section for a 
circular channel of diameter D can be shown to be y � D/2.

EXAMPLE 13–5    Best Cross Section of an Open Channel

Water is to be transported at a rate of 2 m3/s in uniform flow in an open 
channel whose surfaces are asphalt lined. The bottom slope is 0.001. Deter-
mine the dimensions of the best cross section if the shape of the channel is 
(a) rectangular and (b) trapezoidal (Fig. 13–27).
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 (13-59)

因為 tan 60° =
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OPEN-CHANNEL FLOW

For the special case of � � 90� (a rectangular channel), this relation reduces 
to y � b/2, as expected.
 The hydraulic radius Rh for a trapezoidal channel can be expressed as

 Rh 5
Ac

p
5

y(b 1y/tan u )

b 12y/sin u
5

y(b sin u 1y  cos u )

b sin u 12y
 (13–53)

Rearranging Eq. 13–52 as bsin � � 2y(1 � cos �), substituting into Eq. 13–53 
and simplifying, the hydraulic radius for a trapezoidal channel with the best 
cross section becomes

Hydraulic radius for the best cross section:  Rh 5
y

2
 (13–54)

Therefore, the hydraulic radius is half the flow depth for trapezoidal chan-
nels with the best cross section regardless of the trapezoid angle �.
 Similarly, the trapezoid angle for the best hydraulic cross section is deter-
mined by taking the derivative of p (Eq. 13–50) with respect to � while 
holding Ac and y constant, setting dp/d� � 0, and solving the resulting 
equation for �. This gives

Best trapezoid angle: u 5608  (13–55)

Substituting the best trapezoid angle � � 60� into the best hydraulic cross 
section relation y � b sin �/(2 � 2 cos �) gives

Best flow depth for � � 60�: y 5
"3

2
 b (13–56)

Then the length of the side edge of the flow section and the flow area become

  s 5
y

sin 608
5

b"3/2

"3/2
5b (13–57)

  p 53b (13–58)

  Ac 5 ab 1
y

tan u
by 5 ab 1

b"3/2

tan 608
b(b"3/2) 5

3"3

4
 b2 (13–59)

since tan 608 5"3. Therefore, the best cross section for trapezoidal chan-
nels is half of a hexagon (Fig. 13–26). This is not surprising since a hexagon 
closely approximates a circle, and a half-hexagon has the least perimeter per 
unit cross-sectional area of all trapezoidal channels.
 Best hydraulic cross sections for other channel shapes can be determined 
in a similar manner. For example, the best hydraulic cross section for a 
circular channel of diameter D can be shown to be y � D/2.

EXAMPLE 13–5    Best Cross Section of an Open Channel

Water is to be transported at a rate of 2 m3/s in uniform flow in an open 
channel whose surfaces are asphalt lined. The bottom slope is 0.001. Deter-
mine the dimensions of the best cross section if the shape of the channel is 
(a) rectangular and (b) trapezoidal (Fig. 13–27).
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。因此梯形渠道的最好的截面是六邊形的一

半 (圖 13-26)。這不令人驚訝，因為六邊形非常接近圓形，並且

六邊形的一半在所有梯形渠道中每單位截面積有最小的周長。

其它渠道形狀的最好的水力截面也可以用相同的方式來決

定。例如，一個直徑 D 的圓形渠道其最好的水力截面可以證明

為 y=D/2。
圖 13-26　梯形渠道的最好的截面是
一個六邊形的一半。
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For the special case of � � 90� (a rectangular channel), this relation reduces 
to y � b/2, as expected.
 The hydraulic radius Rh for a trapezoidal channel can be expressed as

 Rh 5
Ac

p
5

y(b 1y/tan u )

b 12y/sin u
5

y(b sin u 1y  cos u )

b sin u 12y
 (13–53)

Rearranging Eq. 13–52 as bsin � � 2y(1 � cos �), substituting into Eq. 13–53 
and simplifying, the hydraulic radius for a trapezoidal channel with the best 
cross section becomes

Hydraulic radius for the best cross section:  Rh 5
y

2
 (13–54)

Therefore, the hydraulic radius is half the flow depth for trapezoidal chan-
nels with the best cross section regardless of the trapezoid angle �.
 Similarly, the trapezoid angle for the best hydraulic cross section is deter-
mined by taking the derivative of p (Eq. 13–50) with respect to � while 
holding Ac and y constant, setting dp/d� � 0, and solving the resulting 
equation for �. This gives

Best trapezoid angle: u 5608  (13–55)

Substituting the best trapezoid angle � � 60� into the best hydraulic cross 
section relation y � b sin �/(2 � 2 cos �) gives

Best flow depth for � � 60�: y 5
"3

2
 b (13–56)

Then the length of the side edge of the flow section and the flow area become

  s 5
y

sin 608
5

b"3/2

"3/2
5b (13–57)

  p 53b (13–58)

  Ac 5 ab 1
y

tan u
by 5 ab 1

b"3/2

tan 608
b(b"3/2) 5

3"3

4
 b2 (13–59)

since tan 608 5"3. Therefore, the best cross section for trapezoidal chan-
nels is half of a hexagon (Fig. 13–26). This is not surprising since a hexagon 
closely approximates a circle, and a half-hexagon has the least perimeter per 
unit cross-sectional area of all trapezoidal channels.
 Best hydraulic cross sections for other channel shapes can be determined 
in a similar manner. For example, the best hydraulic cross section for a 
circular channel of diameter D can be shown to be y � D/2.

EXAMPLE 13–5    Best Cross Section of an Open Channel

Water is to be transported at a rate of 2 m3/s in uniform flow in an open 
channel whose surfaces are asphalt lined. The bottom slope is 0.001. Deter-
mine the dimensions of the best cross section if the shape of the channel is 
(a) rectangular and (b) trapezoidal (Fig. 13–27).
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解析：(a) 矩形渠道的最好截面發生在當流動高度是渠道寬度的一

半時，y=b/2。因此渠道的截面積、周長與水力半徑為

747
CHAPTER 13

SOLUTION  Water is to be transported in an open channel at a specified 
rate. The best channel dimensions are to be determined for rectangular and 
trapezoidal shapes.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with asphalt lining 
is n � 0.016.
Analysis  (a) The best cross section for a rectangular channel occurs when 
the flow height is half the channel width, y � b/2. Then the cross-sectional 
area, perimeter, and hydraulic radius of the channel are
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Substituting into the Manning equation,
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which gives b � 1.84 m. Therefore, Ac � 1.70 m2, p � 3.68 m, and the 
dimensions of the best rectangular channel are

b 51.84 m  and  y 50.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-
ezoid angle is 60� and flow height is y 5 b!3/2. Then,
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which yields b � 1.12 m. Therefore, Ac � 1.64 m2, p � 3.37 m, and the 
dimensions of the best trapezoidal channel are

b 51.12 m  y 50.973 m  and  u 5608

Discussion  Note that the trapezoidal cross section is better since it has a 
smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 
This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 
However, the average velocity through the trapezoidal channel is larger since 
Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 
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FIGURE 13–28
Many man-made water channels 
are trapezoidal in shape because 

of low construction cost and 
good performance.
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SOLUTION  Water is to be transported in an open channel at a specified 
rate. The best channel dimensions are to be determined for rectangular and 
trapezoidal shapes.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with asphalt lining 
is n � 0.016.
Analysis  (a) The best cross section for a rectangular channel occurs when 
the flow height is half the channel width, y � b/2. Then the cross-sectional 
area, perimeter, and hydraulic radius of the channel are
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which gives b � 1.84 m. Therefore, Ac � 1.70 m2, p � 3.68 m, and the 
dimensions of the best rectangular channel are

b 51.84 m  and  y 50.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-
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which yields b � 1.12 m. Therefore, Ac � 1.64 m2, p � 3.37 m, and the 
dimensions of the best trapezoidal channel are

b 51.12 m  y 50.973 m  and  u 5608

Discussion  Note that the trapezoidal cross section is better since it has a 
smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 
This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 
However, the average velocity through the trapezoidal channel is larger since 
Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 
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其給出 b =1.84 m。因此，Ac =1.70 m2，p =3.68 m，且最好的矩

形渠道的尺寸為

b=1.84 m　與　y=0.92 m

(b) 梯形渠道的最好截面發生在當梯形角度 60° 與流動高度是 

y=b 3 /2 時。因此
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Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with asphalt lining 
is n � 0.016.
Analysis  (a) The best cross section for a rectangular channel occurs when 
the flow height is half the channel width, y � b/2. Then the cross-sectional 
area, perimeter, and hydraulic radius of the channel are
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which gives b � 1.84 m. Therefore, Ac � 1.70 m2, p � 3.68 m, and the 
dimensions of the best rectangular channel are

b 51.84 m  and  y 50.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-
ezoid angle is 60� and flow height is y 5 b!3/2. Then,

Ac 5y(b 1b cos u ) 50.5"3b2(1 1cos 608 ) 50.75"3b2

p 53b  Rh 5
y

2
5
"3

4
 b

Substituting into the Manning equation,

V
#
5

a
n

 AcR
2/3
h S1/2

0   S  b 5 a (0.016)(2 m3/s)

0.75"3("3/4)2/3(1 m1/3/s)"0.001
b

3/8

which yields b � 1.12 m. Therefore, Ac � 1.64 m2, p � 3.37 m, and the 
dimensions of the best trapezoidal channel are

b 51.12 m  y 50.973 m  and  u 5608

Discussion  Note that the trapezoidal cross section is better since it has a 
smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 
This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 
However, the average velocity through the trapezoidal channel is larger since 
Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 
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SOLUTION  Water is to be transported in an open channel at a specified 
rate. The best channel dimensions are to be determined for rectangular and 
trapezoidal shapes.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with asphalt lining 
is n � 0.016.
Analysis  (a) The best cross section for a rectangular channel occurs when 
the flow height is half the channel width, y � b/2. Then the cross-sectional 
area, perimeter, and hydraulic radius of the channel are

Ac 5by 5
b2

2
  p 5b 12y 52b  Rh 5

Ac

p
5

b

4

Substituting into the Manning equation,

V
#
5

a
n

 AcR
2/3
h S1/2

0   S  b 5 a2nV
#
42/3

a"S0

b
3/8
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which gives b � 1.84 m. Therefore, Ac � 1.70 m2, p � 3.68 m, and the 
dimensions of the best rectangular channel are

b 51.84 m  and  y 50.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-
ezoid angle is 60� and flow height is y 5 b!3/2. Then,

Ac 5y(b 1b cos u ) 50.5"3b2(1 1cos 608 ) 50.75"3b2

p 53b  Rh 5
y

2
5
"3

4
 b

Substituting into the Manning equation,

V
#
5

a
n

 AcR
2/3
h S1/2
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which yields b � 1.12 m. Therefore, Ac � 1.64 m2, p � 3.37 m, and the 
dimensions of the best trapezoidal channel are

b 51.12 m  y 50.973 m  and  u 5608

Discussion  Note that the trapezoidal cross section is better since it has a 
smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 
This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 
However, the average velocity through the trapezoidal channel is larger since 
Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 
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其給出 b=1.12 m。因此 Ac =1.64 m2，p=3.37 m，且最好的梯形

渠道的尺寸為
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SOLUTION  Water is to be transported in an open channel at a specified 
rate. The best channel dimensions are to be determined for rectangular and 
trapezoidal shapes.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with asphalt lining 
is n � 0.016.
Analysis  (a) The best cross section for a rectangular channel occurs when 
the flow height is half the channel width, y � b/2. Then the cross-sectional 
area, perimeter, and hydraulic radius of the channel are
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which gives b � 1.84 m. Therefore, Ac � 1.70 m2, p � 3.68 m, and the 
dimensions of the best rectangular channel are

b 51.84 m  and  y 50.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-
ezoid angle is 60� and flow height is y 5 b!3/2. Then,

Ac 5y(b 1b cos u ) 50.5"3b2(1 1cos 608 ) 50.75"3b2
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which yields b � 1.12 m. Therefore, Ac � 1.64 m2, p � 3.37 m, and the 
dimensions of the best trapezoidal channel are

b 51.12 m  y 50.973 m  and  u 5608

Discussion  Note that the trapezoidal cross section is better since it has a 
smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 
This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 
However, the average velocity through the trapezoidal channel is larger since 
Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 
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SOLUTION  Water is to be transported in an open channel at a specified 
rate. The best channel dimensions are to be determined for rectangular and 
trapezoidal shapes.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with asphalt lining 
is n � 0.016.
Analysis  (a) The best cross section for a rectangular channel occurs when 
the flow height is half the channel width, y � b/2. Then the cross-sectional 
area, perimeter, and hydraulic radius of the channel are
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which gives b � 1.84 m. Therefore, Ac � 1.70 m2, p � 3.68 m, and the 
dimensions of the best rectangular channel are

b 51.84 m  and  y 50.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-
ezoid angle is 60� and flow height is y 5 b!3/2. Then,
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which yields b � 1.12 m. Therefore, Ac � 1.64 m2, p � 3.37 m, and the 
dimensions of the best trapezoidal channel are

b 51.12 m  y 50.973 m  and  u 5608

Discussion  Note that the trapezoidal cross section is better since it has a 
smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 
This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 
However, the average velocity through the trapezoidal channel is larger since 
Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 
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FIGURE 13–28
Many man-made water channels 
are trapezoidal in shape because 

of low construction cost and 
good performance.

(a) © Pixtal/AGE Fotostock RF; 
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討論：注意梯形截面較好因為它有較小的周長 (3.37 m 對 3.68 

m)，因此有較低的建造成本。這是為什麼許多人造水道是梯形的

原因 (圖 13-28)。然而，通過梯形渠道的平均速度較大，因為 Ac 

較小。

圖 13-27　例題 13-5 的示意圖。
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SOLUTION  Water is to be transported in an open channel at a specified 
rate. The best channel dimensions are to be determined for rectangular and 
trapezoidal shapes.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with asphalt lining 
is n � 0.016.
Analysis  (a) The best cross section for a rectangular channel occurs when 
the flow height is half the channel width, y � b/2. Then the cross-sectional 
area, perimeter, and hydraulic radius of the channel are
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which gives b � 1.84 m. Therefore, Ac � 1.70 m2, p � 3.68 m, and the 
dimensions of the best rectangular channel are

b 51.84 m  and  y 50.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-
ezoid angle is 60� and flow height is y 5 b!3/2. Then,
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which yields b � 1.12 m. Therefore, Ac � 1.64 m2, p � 3.37 m, and the 
dimensions of the best trapezoidal channel are

b 51.12 m  y 50.973 m  and  u 5608

Discussion  Note that the trapezoidal cross section is better since it has a 
smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 
This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 
However, the average velocity through the trapezoidal channel is larger since 
Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 
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FIGURE 13–28
Many man-made water channels 
are trapezoidal in shape because 

of low construction cost and 
good performance.

(a) © Pixtal/AGE Fotostock RF; 
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圖 13-28　許多人造的水流渠道是梯
形的，因為有較低的建造成本與較

好的性能。
(a) © Pixtal/AGE Fotostock RF;
(b) Photo by Bryan Lewis.
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SOLUTION  Water is to be transported in an open channel at a specified 
rate. The best channel dimensions are to be determined for rectangular and 
trapezoidal shapes.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with asphalt lining 
is n � 0.016.
Analysis  (a) The best cross section for a rectangular channel occurs when 
the flow height is half the channel width, y � b/2. Then the cross-sectional 
area, perimeter, and hydraulic radius of the channel are
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which gives b � 1.84 m. Therefore, Ac � 1.70 m2, p � 3.68 m, and the 
dimensions of the best rectangular channel are

b 51.84 m  and  y 50.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-
ezoid angle is 60� and flow height is y 5 b!3/2. Then,
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p 53b  Rh 5
y

2
5
"3

4
 b

Substituting into the Manning equation,

V
#
5

a
n

 AcR
2/3
h S1/2

0   S  b 5 a (0.016)(2 m3/s)

0.75"3("3/4)2/3(1 m1/3/s)"0.001
b

3/8

which yields b � 1.12 m. Therefore, Ac � 1.64 m2, p � 3.37 m, and the 
dimensions of the best trapezoidal channel are

b 51.12 m  y 50.973 m  and  u 5608

Discussion  Note that the trapezoidal cross section is better since it has a 
smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 
This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 
However, the average velocity through the trapezoidal channel is larger since 
Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 
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FIGURE 13–27
Schematic for Example 13–5.

FIGURE 13–28
Many man-made water channels 
are trapezoidal in shape because 

of low construction cost and 
good performance.

(a) © Pixtal/AGE Fotostock RF; 
(b) Photo by Bryan Lewis. 

(a)

(b)
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13-7　漸變流

到目前為止，我們考慮的是均勻流，其流動深度 y 與流速 V 維持為常數。本

節中考慮漸變流 (GVF)，這是一種穩定的非均勻流形式，特徵是流動深度與速度逐

漸改變 (小斜率且沒有突然的變化)，並且自由表面總是維持平滑的 (沒有不連續性
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與曲折)。流動深度與速度快速變化的流動，稱為急變流 (RVF)，將在 13-8 節中討

論。底面斜率或渠道截面或流道中的一個障礙物的改變，都可能造成渠道中的均勻

流變成漸變流或急變流。

急變流發生在渠道的一個小段之間，具有相對較小的表面積，因此與壁面剪力

有關的摩擦損失是可忽略的。急變流中的水頭損失是高度局部性的，起因於強烈的

擾動與紊流。另一方面，漸變流中的損失主要是由於沿著渠道的摩擦效應，並且可

用曼寧公式來決定。

在漸變流中，流動深度與速度緩慢地改變，且自由表面是穩定的。這使得在質

量與能量守恆定理的基礎上來推導沿著渠道的流動深度變化的公式，並獲得自由表

面的形狀變得是可能的。

在均勻流中，能量線的斜率等於底面的斜率。因此摩擦斜

率等於底面斜率，Sf =S0。然而，在漸變流中這些斜率是不同的 

(圖13-29)。

考慮在一個寬度 b 的矩形明渠中的穩定流，並且假設底面

斜率與水深的任何改變都相當緩慢。我們再一次用平均速度來

寫出方程式並近似壓力分佈為靜水壓的，從式 (13-17)，液體在

任何截面的總水頭是 H = zb +y +V2/2g，其中 zb 是從參考基準

面到底面的垂直距離。將 H 對 x 作微分得到
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in the bottom slope or cross section of a channel or an obstruction in the 
path of flow may cause the uniform flow in a channel to become gradually 
or rapidly varied flow.
 Rapidly varied flows occur over a short section of the channel with rel-
atively small surface area, and thus frictional losses associated with wall 
shear are negligible. Head losses in RVF are highly localized and are due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are 
primarily due to frictional effects along the channel and can be determined 
from the Manning formula.
 In gradually varied flow, the flow depth and velocity vary slowly, and the 
free surface is stable. This makes it possible to formulate the variation of 
flow depth along the channel on the basis of the conservation of mass and 
energy principles and to obtain relations for the profile of the free surface.
 In uniform flow, the slope of the energy line is equal to the slope of the bot-
tom surface. Therefore, the friction slope equals the bottom slope, Sf � S0. 
In gradually varied flow, however, these slopes are different (Fig. 13–29).
 Consider steady flow in a rectangular open channel of width b, and 
assume any variation in the bottom slope and water depth to be rather 
gradual. We again write the equations in terms of average velocity V and 
approximate the pressure distribution as hydrostatic. From Eq. 13–17, the 
total head of the liquid at any cross section is H � zb � y � V 2/2g, where zb 
is the vertical distance of the bottom surface from the reference datum. 
Differentiating H with respect to x gives

 
dH

dx
5

d

dx
 azb 1y 1

V 
2

2g
b 5 dzb

dx
1

dy

dx
1

V
g

 
dV

dx
 (13–60)

But H is the total energy of the liquid and thus dH/dx is the slope of the 
energy line (a negative quantity), which is equal to the negative of the friction 
slope, as shown in Fig. 13–29. Also, dzb /dx is the negative of the bottom 
slope. Therefore,

 
dH

dx
5 2

dhL

dx
5 2Sf  and  

dzb

dx
5 2S0 (13–61)

Substituting Eqs. 13–61 into Eq. 13–60 gives

 S0 2Sf 5
dy

dx
1

V
g

 
dV

dx
 (13–62)

The conservation of mass equation for steady flow in a rectangular channel 
is V

#
 � ybV � constant. Differentiating with respect to x gives

 0 5 bV  
dy

dx
1 yb 

dV

dx
  S  

dV

dx
5 2

V
y

 
dy

dx
 (13–63)

Substituting Eq. 13–63 into Eq. 13–62 and noting that V/!gy is the Froude 
number,

 S0 2Sf 5
dy

dx
2

V 2

gy
 
dy

dx
5

dy

dx
2Fr2 

dy

dx
 (13–64)

Solving for dy/dx gives the desired relation for the rate of change of flow 
depth (or the surface profile) in gradually varied flow in an open channel,

The GVF equation: 
dy

dx
5

S0 2Sf

1 2Fr2 (13–65)

z , H

V2

V � dV

y � dy

V

2g

x x � dx

y

zb

dx

zb � dzb

x

dhL

(V � dV)2

2g

FIGURE 13–29
Variation of properties over a 
differential flow section in an open 
channel under conditions of gradually 
varied flow (GVF).
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 (13-60)

但是 H 是液體的總能量，因此 dH/dx 是能量線的斜率 (一個負的量)，它等於摩擦

斜率的負值，如示於圖 13-29 中的。同時，dzb/dx 是底面斜率的負值。因此，
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in the bottom slope or cross section of a channel or an obstruction in the 
path of flow may cause the uniform flow in a channel to become gradually 
or rapidly varied flow.
 Rapidly varied flows occur over a short section of the channel with rel-
atively small surface area, and thus frictional losses associated with wall 
shear are negligible. Head losses in RVF are highly localized and are due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are 
primarily due to frictional effects along the channel and can be determined 
from the Manning formula.
 In gradually varied flow, the flow depth and velocity vary slowly, and the 
free surface is stable. This makes it possible to formulate the variation of 
flow depth along the channel on the basis of the conservation of mass and 
energy principles and to obtain relations for the profile of the free surface.
 In uniform flow, the slope of the energy line is equal to the slope of the bot-
tom surface. Therefore, the friction slope equals the bottom slope, Sf � S0. 
In gradually varied flow, however, these slopes are different (Fig. 13–29).
 Consider steady flow in a rectangular open channel of width b, and 
assume any variation in the bottom slope and water depth to be rather 
gradual. We again write the equations in terms of average velocity V and 
approximate the pressure distribution as hydrostatic. From Eq. 13–17, the 
total head of the liquid at any cross section is H � zb � y � V 2/2g, where zb 
is the vertical distance of the bottom surface from the reference datum. 
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But H is the total energy of the liquid and thus dH/dx is the slope of the 
energy line (a negative quantity), which is equal to the negative of the friction 
slope, as shown in Fig. 13–29. Also, dzb /dx is the negative of the bottom 
slope. Therefore,
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Substituting Eq. 13–63 into Eq. 13–62 and noting that V/!gy is the Froude 
number,
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Solving for dy/dx gives the desired relation for the rate of change of flow 
depth (or the surface profile) in gradually varied flow in an open channel,

The GVF equation: 
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FIGURE 13–29
Variation of properties over a 
differential flow section in an open 
channel under conditions of gradually 
varied flow (GVF).
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in the bottom slope or cross section of a channel or an obstruction in the 
path of flow may cause the uniform flow in a channel to become gradually 
or rapidly varied flow.
 Rapidly varied flows occur over a short section of the channel with rel-
atively small surface area, and thus frictional losses associated with wall 
shear are negligible. Head losses in RVF are highly localized and are due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are 
primarily due to frictional effects along the channel and can be determined 
from the Manning formula.
 In gradually varied flow, the flow depth and velocity vary slowly, and the 
free surface is stable. This makes it possible to formulate the variation of 
flow depth along the channel on the basis of the conservation of mass and 
energy principles and to obtain relations for the profile of the free surface.
 In uniform flow, the slope of the energy line is equal to the slope of the bot-
tom surface. Therefore, the friction slope equals the bottom slope, Sf � S0. 
In gradually varied flow, however, these slopes are different (Fig. 13–29).
 Consider steady flow in a rectangular open channel of width b, and 
assume any variation in the bottom slope and water depth to be rather 
gradual. We again write the equations in terms of average velocity V and 
approximate the pressure distribution as hydrostatic. From Eq. 13–17, the 
total head of the liquid at any cross section is H � zb � y � V 2/2g, where zb 
is the vertical distance of the bottom surface from the reference datum. 
Differentiating H with respect to x gives
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But H is the total energy of the liquid and thus dH/dx is the slope of the 
energy line (a negative quantity), which is equal to the negative of the friction 
slope, as shown in Fig. 13–29. Also, dzb /dx is the negative of the bottom 
slope. Therefore,
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is V

#
 � ybV � constant. Differentiating with respect to x gives

 0 5 bV  
dy

dx
1 yb 

dV

dx
  S  

dV

dx
5 2

V
y

 
dy

dx
 (13–63)

Substituting Eq. 13–63 into Eq. 13–62 and noting that V/!gy is the Froude 
number,
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Solving for dy/dx gives the desired relation for the rate of change of flow 
depth (or the surface profile) in gradually varied flow in an open channel,

The GVF equation: 
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FIGURE 13–29
Variation of properties over a 
differential flow section in an open 
channel under conditions of gradually 
varied flow (GVF).
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將式 (13-61) 代入式 (13-60) 得到
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in the bottom slope or cross section of a channel or an obstruction in the 
path of flow may cause the uniform flow in a channel to become gradually 
or rapidly varied flow.
 Rapidly varied flows occur over a short section of the channel with rel-
atively small surface area, and thus frictional losses associated with wall 
shear are negligible. Head losses in RVF are highly localized and are due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are 
primarily due to frictional effects along the channel and can be determined 
from the Manning formula.
 In gradually varied flow, the flow depth and velocity vary slowly, and the 
free surface is stable. This makes it possible to formulate the variation of 
flow depth along the channel on the basis of the conservation of mass and 
energy principles and to obtain relations for the profile of the free surface.
 In uniform flow, the slope of the energy line is equal to the slope of the bot-
tom surface. Therefore, the friction slope equals the bottom slope, Sf � S0. 
In gradually varied flow, however, these slopes are different (Fig. 13–29).
 Consider steady flow in a rectangular open channel of width b, and 
assume any variation in the bottom slope and water depth to be rather 
gradual. We again write the equations in terms of average velocity V and 
approximate the pressure distribution as hydrostatic. From Eq. 13–17, the 
total head of the liquid at any cross section is H � zb � y � V 2/2g, where zb 
is the vertical distance of the bottom surface from the reference datum. 
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But H is the total energy of the liquid and thus dH/dx is the slope of the 
energy line (a negative quantity), which is equal to the negative of the friction 
slope, as shown in Fig. 13–29. Also, dzb /dx is the negative of the bottom 
slope. Therefore,
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Solving for dy/dx gives the desired relation for the rate of change of flow 
depth (or the surface profile) in gradually varied flow in an open channel,
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differential flow section in an open 
channel under conditions of gradually 
varied flow (GVF).
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質量守恆方程式對在矩形渠道中的穩定流是 
⋅
V =ybV=常數。相對於 x 作微分得到
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in the bottom slope or cross section of a channel or an obstruction in the 
path of flow may cause the uniform flow in a channel to become gradually 
or rapidly varied flow.
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atively small surface area, and thus frictional losses associated with wall 
shear are negligible. Head losses in RVF are highly localized and are due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are 
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 In gradually varied flow, the flow depth and velocity vary slowly, and the 
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 In uniform flow, the slope of the energy line is equal to the slope of the bot-
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gradual. We again write the equations in terms of average velocity V and 
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energy line (a negative quantity), which is equal to the negative of the friction 
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圖 13-29　一個明渠在漸變流 (GVF) 
的條件下，經過一個微分流動段的

性質的變化。
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atively small surface area, and thus frictional losses associated with wall 
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channel under conditions of gradually 
varied flow (GVF).

725-786_cengel_ch13.indd   748 7/2/13   6:57 PM

水平線

水平的

摩擦斜率 Sf

能量線, H

底面斜率 S0

參考基準面



第 13 章　明渠流 27

將式 (13-63) 代入式 (13-62) 中，並注意 V/ gy  是福勞數，
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in the bottom slope or cross section of a channel or an obstruction in the 
path of flow may cause the uniform flow in a channel to become gradually 
or rapidly varied flow.
 Rapidly varied flows occur over a short section of the channel with rel-
atively small surface area, and thus frictional losses associated with wall 
shear are negligible. Head losses in RVF are highly localized and are due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are 
primarily due to frictional effects along the channel and can be determined 
from the Manning formula.
 In gradually varied flow, the flow depth and velocity vary slowly, and the 
free surface is stable. This makes it possible to formulate the variation of 
flow depth along the channel on the basis of the conservation of mass and 
energy principles and to obtain relations for the profile of the free surface.
 In uniform flow, the slope of the energy line is equal to the slope of the bot-
tom surface. Therefore, the friction slope equals the bottom slope, Sf � S0. 
In gradually varied flow, however, these slopes are different (Fig. 13–29).
 Consider steady flow in a rectangular open channel of width b, and 
assume any variation in the bottom slope and water depth to be rather 
gradual. We again write the equations in terms of average velocity V and 
approximate the pressure distribution as hydrostatic. From Eq. 13–17, the 
total head of the liquid at any cross section is H � zb � y � V 2/2g, where zb 
is the vertical distance of the bottom surface from the reference datum. 
Differentiating H with respect to x gives
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dx
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b 5 dzb

dx
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 (13–60)

But H is the total energy of the liquid and thus dH/dx is the slope of the 
energy line (a negative quantity), which is equal to the negative of the friction 
slope, as shown in Fig. 13–29. Also, dzb /dx is the negative of the bottom 
slope. Therefore,

 
dH

dx
5 2
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5 2Sf  and  
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5 2S0 (13–61)

Substituting Eqs. 13–61 into Eq. 13–60 gives

 S0 2Sf 5
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V
g

 
dV
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 (13–62)

The conservation of mass equation for steady flow in a rectangular channel 
is V

#
 � ybV � constant. Differentiating with respect to x gives

 0 5 bV  
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1 yb 
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 (13–63)

Substituting Eq. 13–63 into Eq. 13–62 and noting that V/!gy is the Froude 
number,
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Solving for dy/dx gives the desired relation for the rate of change of flow 
depth (or the surface profile) in gradually varied flow in an open channel,

The GVF equation: 
dy

dx
5

S0 2Sf

1 2Fr2 (13–65)
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FIGURE 13–29
Variation of properties over a 
differential flow section in an open 
channel under conditions of gradually 
varied flow (GVF).

725-786_cengel_ch13.indd   748 7/2/13   6:57 PM

 (13-64)

求解 dy/dx，得到在一個明渠中的漸變流的流動深度 (或表面形狀) 的變化率的關係

式，

GVF 方程式： 
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in the bottom slope or cross section of a channel or an obstruction in the 
path of flow may cause the uniform flow in a channel to become gradually 
or rapidly varied flow.
 Rapidly varied flows occur over a short section of the channel with rel-
atively small surface area, and thus frictional losses associated with wall 
shear are negligible. Head losses in RVF are highly localized and are due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are 
primarily due to frictional effects along the channel and can be determined 
from the Manning formula.
 In gradually varied flow, the flow depth and velocity vary slowly, and the 
free surface is stable. This makes it possible to formulate the variation of 
flow depth along the channel on the basis of the conservation of mass and 
energy principles and to obtain relations for the profile of the free surface.
 In uniform flow, the slope of the energy line is equal to the slope of the bot-
tom surface. Therefore, the friction slope equals the bottom slope, Sf � S0. 
In gradually varied flow, however, these slopes are different (Fig. 13–29).
 Consider steady flow in a rectangular open channel of width b, and 
assume any variation in the bottom slope and water depth to be rather 
gradual. We again write the equations in terms of average velocity V and 
approximate the pressure distribution as hydrostatic. From Eq. 13–17, the 
total head of the liquid at any cross section is H � zb � y � V 2/2g, where zb 
is the vertical distance of the bottom surface from the reference datum. 
Differentiating H with respect to x gives
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But H is the total energy of the liquid and thus dH/dx is the slope of the 
energy line (a negative quantity), which is equal to the negative of the friction 
slope, as shown in Fig. 13–29. Also, dzb /dx is the negative of the bottom 
slope. Therefore,
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The conservation of mass equation for steady flow in a rectangular channel 
is V
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Substituting Eq. 13–63 into Eq. 13–62 and noting that V/!gy is the Froude 
number,
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Solving for dy/dx gives the desired relation for the rate of change of flow 
depth (or the surface profile) in gradually varied flow in an open channel,

The GVF equation: 
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FIGURE 13–29
Variation of properties over a 
differential flow section in an open 
channel under conditions of gradually 
varied flow (GVF).
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這與在可壓縮流中流動面積作為馬赫數的函數的變化關係類似。這個關係式是為矩

形渠道導出的，但對其它截面的渠道也是成立的，只要福勞數被適當地表示即可。

對於一組給定的參數，這個微分方程式的解析或數值解會得到流動深度 y 與 x 的函

數關係表示式，而函數 y(x) 即表面形狀。

流動深度的一般趨勢－不管它沿著渠道是增加、減小或維持常數－相依於 

dy/dx 的正負號，而它則相依於式 (13-65) 中分子與分母的正負號。福勞數永遠是

正的，摩擦斜率 Sf 也是一樣 (除非是理想情況下的流動，其摩擦效應可以忽略，hL 

與 Sf  兩者都是零)。底面斜率 S0 對往下傾斜的流段 (一般的情況) 是正的，對水平

流段是零，而對往上傾斜的流段 (逆流) 是負的。流動深度當 dy/dx >0 時增加，當  

d y / d x <0  時減小，而當  d y / d x =0  時，維持為常數  (因此自由表面平行

於渠道底面，如在均勻流之情況 )  並且  S 0 =S f  (圖  

13-30)。對於指定 S0 與 Sf 時，dy/dx 可能是正或負，端視福勞

數小於或大於 1 而定。因此，次臨界流與超臨界流的流動行為

是相反的。假如 S0 −Sf >0，次臨界流在流動方向的流動深度增

加，但在超臨界流中則減小。

分母  1 −Fr2 的正負號的決定是簡單的：對於次臨界流 

(Fr <1)，它是正的；而對於超臨界流 (Fr >1)，則是負的。但

是分子的正負號要看 S0 與 Sf 的相對大小而定。注意摩擦斜率 

Sf 永遠是正的，其值在均勻流中 (y =yn) 等於渠道斜率 S0。摩

擦斜率是會隨著流動距離改變的量，並且就像在例題 13-6 中

所展示的，可以用曼寧方程式根據每個流動位置的深度來做計

算。注意水頭損失隨著速度增加而增加，並且對於一個給定的

流率，速度與流動深度成反比。因此當 y < yn 時，Sf >S0，從

而 S0 −Sf <0；當 y >yn 時，Sf <S0，從而 S0 −Sf >0。對於水平

的 (S0 =0) 與向上傾斜的 (S0 <0) 渠道，分子 S0 −Sf 永遠都是負

圖 13-30　一條緩慢流動的河流，具
有幾乎是常數的深度與截面，例如

這裡顯示的芝加哥河，是均勻流的

一個例子，其 S0 ≈Sf 及 dy/dx≈0。
© Hisham F. Ibrahim/Getty RF
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FIGURE 13–30
A slow-moving river of approximately 

constant depth and cross section, 
such as the Chicago River shown 

here, is an example of uniform 
flow with S0 � Sf  and dy/dx � 0.

© Hisham F. Ibrahim/Getty RF

which is analogous to the variation of flow area as a function of the Mach 
number in compressible flow. This relation is derived for a rectangular chan-
nel, but it is also valid for channels of other constant cross sections provided 
that the Froude number is expressed accordingly. An analytical or numerical 
solution of this differential equation gives the flow depth y as a function of x 
for a given set of parameters, and the function y(x) is the surface profile.
 The general trend of flow depth—whether it increases, decreases, or 
remains constant along the channel—depends on the sign of dy/dx, which 
depends on the signs of the numerator and the denominator of Eq. 13–65. 
The Froude number is always positive and so is the friction slope Sf 
(except  for the idealized case of flow with negligible frictional effects for 
which both hL and Sf are zero). The bottom slope S0 is positive for down-
ward-sloping sections (typically the case), zero for horizontal sections, and 
negative for upward-sloping sections of a channel (adverse flow). The flow 
depth increases when dy/dx � 0, decreases when dy/dx � 0, and remains 
constant (and thus the free surface is parallel to the channel bottom, as in 
uniform flow) when dy/dx � 0 and thus S0 � Sf (Fig. 13–30). For specified 
values of S0 and Sf, the term dy/dx may be positive or negative, depending on 
whether the Froude number is less than or greater than 1. Therefore, the flow 
behavior is opposite in subcritical and supercritical flows. For S0 � Sf � 0, 
for example, the flow depth increases in the flow direction in subcritical 
flow, but it decreases in supercritical flow.
 The determination of the sign of the denominator 1 � Fr2 is easy: it is 
positive for subcritical flow (Fr � 1), and negative for supercritical flow 
(Fr � 1). But the sign of the numerator depends on the relative magnitudes 
of S0 and Sf. Note that the friction slope Sf is always positive, and its value 
is equal to the channel slope S0 in uniform flow, y � yn. The friction slope 
is a quantity that varies with streamwise distance, and is calculated from 
the Manning equation, based upon the depth at each streamwise location, 
as demonstrated in Example 13–6. Noting that head loss increases with 
increasing velocity, and that the velocity is inversely proportional to flow 
depth for a given flow rate, Sf � S0 and thus S0 � Sf � 0 when y � yn, and 
Sf � S0 and thus S0 � Sf � 0 when y � yn. The numerator S0 � Sf is always 
negative for horizontal (S0 � 0) and upward-sloping (S0 � 0) channels, and 
thus the flow depth decreases in the flow direction during subcritical flows 
in such channels.

Liquid Surface Profiles in Open Channels, y(x)
Open-channel systems are designed and built on the basis of the projected 
flow depths along the channel. Therefore, it is important to be able to pre-
dict the flow depth for a specified flow rate and specified channel geometry. 
A plot of flow depth versus downstream distance is the surface profile y(x) 
of the flow. The general characteristics of surface profiles for gradually var-
ied flow depend on the bottom slope and flow depth relative to the critical 
and normal depths.
 A typical open channel involves various sections of different bottom 
slopes S0 and different flow regimes, and thus various sections of different 
surface profiles. For example, the general shape of the surface profile in a 
downward-sloping section of a channel is different than that in an upward-
sloping section. Likewise, the profile in subcritical flow is different than the 
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的，因此在這種渠道中，當在次臨界流時，流動深度沿著流動方向減小。

明渠中的液體表面形狀，y(x)

明渠系統的設計與建造是根據沿著渠道的預計流動深度，因此對於一個指定的

流率與指定的渠道能夠預測流動深度是很重要的。一個流動深度相對於流動距離的

圖是流動的表面形狀 (surface profile) y(x)。漸變流的表面形狀的一般特性相依於與

臨界及正常深度相對應的底面斜率與流動深度。

一個典型的明渠包括各種不同底面斜率與不同流域的流段，因此有不同表面形

狀的流動段。例如，渠道的一個向下傾斜的流段的表面形狀的一般形狀與在一個向

上傾斜的流段中的情形是不一樣的。同樣地，在次臨界流中的形狀與在超臨界流中

的形狀也不一樣。不像均勻流中不包括慣性力，漸變流包括液體的加速和減速，因

此表面形狀反應液體重量、剪力與慣性力的動態平衡。

每一種表面形狀由一個指示渠道斜率的字母與一個指示相

對於臨界深度 yc 與正常深度 yn 的流動深度的數字來作標識。

渠道斜率可以是陡峭 (S)、臨界 (C)、溫和 (M)、水平 (H) 或逆

向 (A) (圖 13-31)。渠道斜率如果 yn >yc，被稱為溫和的；如果 

yn <yc，被稱為陡峭的如果 yn =yc，被稱為臨界的如果 S0 =0 (零

底面斜率)，被稱為水平的；以及如果 S0 <0 (負斜率) 被稱為逆

向的。注意當一個明渠中的液體沿山坡向上流動時，渠道斜率

是逆向的。

一個明渠流段的分類相依於流率與渠道截面，也相依於渠

道底面的斜率。一個渠道流段對一個流動被分類為溫和的斜率對另一個流動可能是

陡峭的斜率，而對第三個流動甚至可能是臨界斜率。因此在我們可以評估斜率之

前，需要計算臨界深度 yc 與正常深度 yn。

數字標識對一個給定斜率的渠道指示液體面的起始位置相

對於臨界與均勻流的液面高度的關係，如圖 13-32 所示。用 1 

標識的表面形狀，其流動深度同時大於臨界與正常深度 (y >yc 

且 y >yn)，用 2 標識的流動深度介於兩者之間 (yn >y >yc 或 

yn <y <yc)，而用 3 標識的流動深度則同時小於臨界與正常深度 

(y<yc 且 y<yn)。因此，對一個指定的渠道斜率型態，可能有三

種不同的形狀。但是對於零斜率或逆向斜率的渠道，型態 1 的

流動不能存在因為對於水平或向上的渠道，流動不可能是均勻

的，因此正常深度沒被定義。同時，型態 2 的流動對於有臨界

斜率的渠道不存在，因為在此情況下，臨界與正常深度是相同

的。

圖 13-31　對不同斜率型態的液體表
面形狀用 S、C、M、H 與 A 等不同
字母標識。
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profile in supercritical flow. Unlike uniform flow that does not involve iner-
tial forces, gradually varied flow involves acceleration and deceleration of 
liquid, and the surface profile reflects the dynamic balance between liquid 
weight, shear force, and inertial effects.
 Each surface profile is identified by a letter that indicates the slope of 
the channel and by a number that indicates flow depth relative to the criti-
cal depth yc and normal depth yn. The slope of the channel can be steep 
(S), critical (C), mild (M), horizontal (H), or adverse (A) (Fig. 13–31). The 
channel slope is said to be mild if yn � yc, steep if yn � yc, critical if yn � yc, 
horizontal if S0 � 0 (zero bottom slope), and adverse if S0 � 0 (nega-
tive slope). Note that a liquid flows uphill in an open channel that has an 
adverse slope.
 The classification of a channel section depends on the flow rate and the 
channel cross section as well as the slope of the channel bottom. A channel 
section that is classified to have a mild slope for one flow may have a steep 
slope for another flow, and even a critical slope for a third flow. Therefore, 
we need to calculate the critical depth yc and the normal depth yn before we 
can assess the slope.
 The number designation indicates the initial position of the liquid surface for 
a given channel slope relative to the surface levels in critical and uniform flows, 
as shown in Fig. 13–32. A surface profile is designated by 1 if the flow depth 
is above both critical and normal depths ( y � yc and y � yn), by 2 if the flow 
depth is between the two ( yn � y � yc or yn � y � yc), and by 3 if the flow 
depth is below both the critical and normal depths ( y � yc and y � yn). There-
fore, three different profiles are possible for a specified type of channel slope. 
But for channels with zero or adverse slopes, type 1 flow cannot exist since 
the flow can never be uniform in horizontal and upward channels, and thus 
normal depth is not defined. Also, type 2 flow does not exist for channels with 
critical slope since normal and critical depths are identical in this case.
 The five classes of slopes and the three types of initial positions discussed 
give a total of 12 distinct configurations for surface profiles in GVF, all tabu-
lated and sketched in Table 13–3. The Froude number is also given for each 
case, with Fr � 1 for y � yc, as well as the sign of the slope dy/dx of the 
surface profile determined from Eq. 13–65, dy/dx � (S0 � Sf)/(1 � Fr2). Note 
that dy/dx � 0, and thus the flow depth increases in the flow direction when 
both S0 � Sf and 1 � Fr2 are positive or negative. Otherwise dy/dx � 0 and 
the flow depth decreases. In type 1 flows, the flow depth increases in the 
flow direction and the surface profile approaches the horizontal plane asymp-
totically. In type 2 flows, the flow depth decreases and the surface profile 
approaches the lower of yc or yn. In type 3 flows, the flow depth increases and 
the surface profile approaches the lower of yc or yn. These trends in surface 
profiles continue as long as there is no change in bottom slope or roughness.
 Consider the case in Table 13–3 designated M1 (mild channel slope and 
y � yn � yc). The flow is subcritical since y � yc and thus Fr � 1 and 
1 � Fr2 � 0. Also, Sf � S0 and thus S0 � Sf � 0 since y � yn, and thus 
the flow velocity is less than the velocity in normal flow. Therefore, the 
slope of the surface profile dy/dx � (S0 � Sf)/(1 � Fr2) � 0, and the 
flow depth y increases in the flow direction. But as y increases, the flow 
velocity decreases, and thus Sf and Fr approach zero. Consequently, dy/dx 
approaches S0 and the rate of increase in flow depth becomes equal to the 
channel slope. This requires the surface profile to become horizontal at 
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FIGURE 13–31
Designation of the letters S, C, M, H, 
and A for liquid surface profiles for 
different types of slopes.
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FIGURE 13–32
Designation of the numbers 1, 2, and 3 
for liquid surface profiles based on the 
value of the flow depth relative to the 
normal and critical depths.
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與臨界深度的值的液體表面形狀指

定 1、2 與 3 等數字。
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profile in supercritical flow. Unlike uniform flow that does not involve iner-
tial forces, gradually varied flow involves acceleration and deceleration of 
liquid, and the surface profile reflects the dynamic balance between liquid 
weight, shear force, and inertial effects.
 Each surface profile is identified by a letter that indicates the slope of 
the channel and by a number that indicates flow depth relative to the criti-
cal depth yc and normal depth yn. The slope of the channel can be steep 
(S), critical (C), mild (M), horizontal (H), or adverse (A) (Fig. 13–31). The 
channel slope is said to be mild if yn � yc, steep if yn � yc, critical if yn � yc, 
horizontal if S0 � 0 (zero bottom slope), and adverse if S0 � 0 (nega-
tive slope). Note that a liquid flows uphill in an open channel that has an 
adverse slope.
 The classification of a channel section depends on the flow rate and the 
channel cross section as well as the slope of the channel bottom. A channel 
section that is classified to have a mild slope for one flow may have a steep 
slope for another flow, and even a critical slope for a third flow. Therefore, 
we need to calculate the critical depth yc and the normal depth yn before we 
can assess the slope.
 The number designation indicates the initial position of the liquid surface for 
a given channel slope relative to the surface levels in critical and uniform flows, 
as shown in Fig. 13–32. A surface profile is designated by 1 if the flow depth 
is above both critical and normal depths ( y � yc and y � yn), by 2 if the flow 
depth is between the two ( yn � y � yc or yn � y � yc), and by 3 if the flow 
depth is below both the critical and normal depths ( y � yc and y � yn). There-
fore, three different profiles are possible for a specified type of channel slope. 
But for channels with zero or adverse slopes, type 1 flow cannot exist since 
the flow can never be uniform in horizontal and upward channels, and thus 
normal depth is not defined. Also, type 2 flow does not exist for channels with 
critical slope since normal and critical depths are identical in this case.
 The five classes of slopes and the three types of initial positions discussed 
give a total of 12 distinct configurations for surface profiles in GVF, all tabu-
lated and sketched in Table 13–3. The Froude number is also given for each 
case, with Fr � 1 for y � yc, as well as the sign of the slope dy/dx of the 
surface profile determined from Eq. 13–65, dy/dx � (S0 � Sf)/(1 � Fr2). Note 
that dy/dx � 0, and thus the flow depth increases in the flow direction when 
both S0 � Sf and 1 � Fr2 are positive or negative. Otherwise dy/dx � 0 and 
the flow depth decreases. In type 1 flows, the flow depth increases in the 
flow direction and the surface profile approaches the horizontal plane asymp-
totically. In type 2 flows, the flow depth decreases and the surface profile 
approaches the lower of yc or yn. In type 3 flows, the flow depth increases and 
the surface profile approaches the lower of yc or yn. These trends in surface 
profiles continue as long as there is no change in bottom slope or roughness.
 Consider the case in Table 13–3 designated M1 (mild channel slope and 
y � yn � yc). The flow is subcritical since y � yc and thus Fr � 1 and 
1 � Fr2 � 0. Also, Sf � S0 and thus S0 � Sf � 0 since y � yn, and thus 
the flow velocity is less than the velocity in normal flow. Therefore, the 
slope of the surface profile dy/dx � (S0 � Sf)/(1 � Fr2) � 0, and the 
flow depth y increases in the flow direction. But as y increases, the flow 
velocity decreases, and thus Sf and Fr approach zero. Consequently, dy/dx 
approaches S0 and the rate of increase in flow depth becomes equal to the 
channel slope. This requires the surface profile to become horizontal at 
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FIGURE 13–31
Designation of the letters S, C, M, H, 
and A for liquid surface profiles for 
different types of slopes.
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FIGURE 13–32
Designation of the numbers 1, 2, and 3 
for liquid surface profiles based on the 
value of the flow depth relative to the 
normal and critical depths.
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均勻流的自由表面

臨界流的自由表面

渠道底面
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以上討論五種斜率的分類與三種初始位置的型態，給出在漸變流中十二種不

同的表面形狀外觀，都被列表並畫在表 13-3 中。每一種情況的福勞數也被給出，

對於 y <yc 有 Fr >1，同時也列出從式 (13-65)，dy/dx = (S0 −Sf)/(1 −Fr2)，所決定

的表面形狀的斜率 dy/dx 的正負號。注意當 S0 −Sf 與 1 −Fr2 兩者皆為正或負時  

dy/dx >0，因此流動深度沿著流動方向增加。否則，dy/dx <0 且流動深度減小。第 

1 型流動，流動深度沿著流動的方向增加，並且表面形狀漸近地趨近水平的平面。

第 2 型流動，流動深度減小且表面形狀趨近 yc 或 yn 的較低者。第 3 型流動，流動

深度增加且表面形狀趨近 yc 或 yn 的較低者。這種表面形狀的趨勢只要底面斜率或

粗糙度沒有改變就會一直持續。

考慮表 13-3 標識為 M1 的情況 (溫和渠道斜率且 y>yn >yc)。此流動是次臨界

的因為 y >yc 從而 Fr <1 且 1 −Fr2 >0。同時 Sf <S0 從而 S0 −Sf >0 因為 y >yn，

並且因此流速小於正常流的速度。因此，表面形狀的斜率 dy/dx = (S0 −Sf)/(1 −

Fr2) >0，使得流動深度 y 沿著流動方向增加。但當 y 增加時，流速減小，並且因

此 Sf 與 Fr 趨近零。結果 dy/dx 趨近 S0 使得流動深度的增加率等於渠道斜率。這要

求表面的形狀在 y 大的時候變成水平。因此我們結論 M1 表面形狀在流動的方向先

上升，然後漸進地趨向水平。

當 y→ yc 在次臨界流中 (例如 M2、H2 與 A2)，我們有 Fr→1 且 1 −Fr2→0，

且因此斜率 dy/dx 趨向負無限大；但是當 y→yc 在超臨界流中 (例如 M3、H3 與 

A3)，我們有 Fr→1 且 1 −Fr2→0，且因此 dy/dx，它是一個正量，趨向無限大。亦

即，自由表面幾乎垂直地上升且流動深度非常快速地增加。這在物理上不能夠被維

持，因此自由表面破碎了。結果形成一個水躍。當發生此現象時，一維近似不再適

用。

一些代表性的表面形狀

一個典型的明渠系統包括幾個不同斜率的流段，其間有稱為過渡區的連接段，

因此流動的總表面形狀是一個連續的形狀，由先前所描述過的各個形狀所組成。

明渠中通常會遭遇到幾個代表性的表面形狀，包括一些複合形狀，被給在圖 13-33 

中。對每一種情況，表面形狀的改變是由渠道幾何上的改變所造成的。例如斜率上

的突然改變或在流動中的一個障礙物，如水閘門。更多複合形狀可以從列於參考資

料中的專書中找到。表面形狀上的一點代表在那一點上滿足質量、動量與能量守恆

關係式的流動高度。注意在漸變流中 dy/dx<<1 且 S0 <<1，因此在這些圖中渠道與

表面形狀兩者的斜率，為了有較好的視覺效果都被高度誇大了。許多渠道與表面形

狀如果按照比例畫出，看起來幾乎是水平的。

圖 13-33a 顯示的是在一個有溫和斜率與水閘門的渠道中漸變流的表面形狀。
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TABLE 13–3

Classification of surface profiles in gradually varied flow. The vertical scale is greatly exaggerated.

Channel Profile  Froude Profile Surface
Slope Notation Flow Depth Number Slope Profile

pp

S1

S2

S1

S3

C1
C3

M1
M2

M3

H2

H2
H3

  

 A2
A2

A3
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渠道斜率 形狀符號 流動深度 福勞數 形狀斜率 表面形狀

表 13-3　漸變流中表面形狀的分類。垂直方向的尺寸被高度誇張了。

陡峭 (S) S1

S2

S3

C1

C2

C3

M1

M2

M3

H2

H3

A2

A3

臨界 (C)

溫和 (M)

水平 (H)

逆向 (A)

yc >yn
S0 < Sc

yc =yn
S0 < Sc

y>yc

y<yc

y>yc

y<yc

y>yc

y<yc

y>yc

yn <y<yc

y<yn

y>yn

yc <y<yn

y<yc

Fr<1

Fr>1

Fr<1

Fr>1

Fr<1

Fr>1

Fr<1

Fr>1

Fr>1

Fr<1

Fr<1

Fr>1

yc <yn
S0 <Sc

yn→ ∞
S0 =0

S0 <0
yn：不存在

dy

dx
>0

dy

dx
>0

dy

dx
>0

dy

dx
>0

dy

dx
<0

dy

dx
<0

dy

dx
>0

dy

dx
>0

dy

dx
<0

dy

dx
>0

dy

dx
<0

dy

dx
>0

水平線

水平線

水平線

渠道底面，S0 >Sc

渠道底面，S0 =Sc

渠道底面，S0 <Sc

渠道底面，S0 =0

渠道底面，S0 <0

起始點

表面形狀
y(x)正常

深度

yc

yn

S1

S2

S3

C1

C3

M1

M2

H2

A2

A3

H3

M3

yc =yn

yn

yc

yc

yc

臨界
深度
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次臨界的上游流動 (注意流動是次臨界的，因為斜率是溫和的) 當它接近閘門時慢

下來 (例如河流接近水壩)，並且液體高度上升了。當流動通過閘門時是超臨界的 

(因為開口的高度低於臨界深度)。因此，閘門之前的表面形狀是 M1，而閘門之後

水躍之前是 M3。

一個明渠中的一段可能有負斜率並且包含上坡流，如圖 13-33b 所示的。有逆

向斜率的流動無法維持，除非慣性力能克服抵抗流體運動的重力及摩擦力。因此一

個上坡的渠道流段必須被一個下坡的流段或一個自由出口所跟隨。當具有逆向斜率

的次臨界流接近一個水閘門時，接近閘門時流動深度減小，產生一個 A2 形狀。通
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becomes supercritical when uniform flow is established. The critical depth 
occurs at the break in grade. The change of slope is accompanied by a 
smooth decrease in flow depth through an M2 profile at the end of the mild 
section, and through an S2 profile at the beginning of the steep section. In 
the horizontal section, the flow depth increases first smoothly through an H3 
profile, and then rapidly during a hydraulic jump. The flow depth then 
decreases through an H2 profile as the liquid accelerates toward the end 

yn1

yc

yc

yn2

H3
H2

M2

S2

M1

A2

A3

A2

M3

yn2

yn2

yn2

yc

yc

yn1

yc

yn1

y � yn2

S3

FIGURE 13–33
Some common surface profiles 

encountered in open-channel flow. 
All flows are from left to right.
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(a) 在一個具有溫和斜率的明渠中通過水閘門的流動

(b) 在一個具有逆向斜率及自由出口的明渠中通過水閘門的流動

(c) 均勻的超臨界流從陡峭到較不陡峭的變化

(d) 均勻的次臨界流從溫和到陡峭到具有自由出口的水平斜率的變化

水躍

水躍

水躍

均勻流

均勻流

均勻流

均勻流
均勻流

均勻流

溫和

溫和

逆向

陡峭

陡峭

較不陡峭

水平

自由
落下 圖 13-33　在平渠流中會遭遇到的幾

個常見的表面形狀。所有流動都是

從左向右。
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過閘門的流動一般是超臨界的，在水躍之前會產生一個 A3 形狀。

圖 13-33c 的明渠流段包括一個從陡峭到不那麼陡峭的斜率的改變。在較不陡

峭的那個流段其流速較小 (較小的高度下降驅動流體)，因此當均勻流再一次建立

時，流動深度較高。注意有較陡峭斜率的均勻流必須是超臨界的 (y <yc)，流動深

度很平滑地經過一個 S3 的形狀從起始增加到新的均勻流高度。

圖 13-33d 顯示出一個明渠的複合表面形狀，包含幾個不同的流段。開始時斜

率是溫和的，其流動是均勻且次臨界的。然後流動變成陡峭的，且其流動當均勻流

建立時變成超臨界的。臨界深度發生在坡度改變的地方。斜率的改變伴隨著流動深

度，在溫和段末端經過一個 M2 形狀，與在陡峭段前端經過一個 S2 形狀，平滑地

減小。在水平段，流動深度先經過一個 H3 形狀平滑地增加，然後經歷一個水躍急

速地增加。接著，當液體加速朝去渠道尾端自由向外掉落時，流動深度經過一個 

H2 形狀減小。流動在達到渠道末端之前變成臨界的，並且出口控制著通過水躍的

上游流動。出口的流動是超臨界的。注意，均勻流在水平渠道中不能夠建立，因為

重力在流動方向沒有分量，且流動是慣性驅動的。

表面形狀的數值解

預測表面形狀是設計明渠系統的一個重要部分。一個決定表面形狀的良好起始

點是辨識沿著渠道的重要點，稱為控制點 (control points)，在這些點上的流動深度

可以從流率的知識上計算出來。例如，一個矩形渠道中發生臨界流的截面，其流動

深度稱為臨界點，可以用 yc = (
⋅
V 2/gb2)1/3 決定。正常深度，其為均勻流被建立時所

達到的流動深度，也是一個控制點。一旦有了在控制點上的流動深度，其上游或下

游的表面形狀，通常用數值積分非線性微分方程式 [式 (13-65)，重複寫在這裡] 來

決定
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of the channel to a free outfall. The flow becomes critical before reaching 
the end of the channel, and the outfall controls the upstream flow past the 
hydraulic jump. The outfalling flow stream is supercritical. Note that uniform 
flow cannot be established in a horizontal channel since the gravity force 
has no component in the flow direction, and the flow is inertia-driven.

Numerical Solution of Surface Profile
The prediction of the surface profile y(x) is an important part of the design 
of open-channel systems. A good starting point for the determination of the 
surface profile is the identification of the points along the channel, called 
the control points, at which the flow depth can be calculated from a knowl-
edge of flow rate. For example, the flow depth at a section of a rectangular 
channel where critical flow occurs, called the critical point, is determined 
from yc � (V

#
2/gb2)1/3. The normal depth yn, which is the flow depth reached 

when uniform flow is established, also serves as a control point. Once flow 
depths at control points are available, the surface profile upstream or down-
stream is determined usually by numerical integration of the nonlinear dif-
ferential equation (Eq. 13–65, repeated here)

 
dy

dx
5

S0 2Sf

1 2Fr2 (13–66)

The friction slope Sf is determined from the uniform-flow conditions, and 
the Froude number from a relation appropriate for the channel cross section.

EXAMPLE 13–6    Gradually Varied Flow with M1 Surface Profile

Gradually varied flow of water in a wide rectangular channel with a per-unit-
width flow rate of 1 m3/s�m and a Manning coefficient of n � 0.02 is con-
sidered. The slope of the channel is 0.001, and at the location x � 0, the 
flow depth is measured to be 0.8 m. (a) Determine the normal and critical 
depths of the flow and classify the water surface profile, and (b) calculate 
the flow depth y at x � 1000 m by integrating the GVF equation numerically 
over the range 0 � x � 1000 m. Repeat part (b) to obtain the flow depths 
for different x values, and plot the surface profile (Fig. 13–34).

SOLUTION  Gradually varied flow of water in a wide rectangular channel is 
considered. The normal and critical flow depths, the flow type, and the flow 
depth at a specified location are to be determined, and the surface profile is 
to be plotted.
Assumptions  1 The channel is wide, and the flow is gradually varied. 2 The 
bottom slope is constant. 3 The roughness of the wetted surface of the chan-
nel and thus the friction coefficient are constant.
Properties  The Manning coefficient of the channel is given to be n � 0.02.
Analysis  (a) The channel is said to be wide, and thus the hydraulic radius is 
equal to the flow depth, Rh � y. Knowing the flow rate per unit width (b � 1 m), 
the normal depth is determined from the Manning equation to be
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FIGURE 13–34
Schematic for Example 13–6.
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 (13-66)

摩擦斜率 Sf 是從均勻流條件來決定的，且福勞數是從適用於渠道截面的一個關係

式所決定的。
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 例題 13-6　　有 M1 表面形狀的漸變流

考慮水在一個每單位寬度流率 1 m3/s ⋅m，曼寧係數為 n =0.02 的

寬矩形渠道中的漸變流。渠道的斜率是 0.001，並且在 x =0 的位

置量測到的流動深度是 0.8 m。(a) 決定流動的正常和臨界流動深

度，並分類水的表面形狀，並 (b) 在範圍 0 ≤x≤1000 m 用數值方

法積分 GVF 方程式來計算在 x =1000 m 的流動深度 y。重做 (b) 

小題得到不同 x 值的流動深度，並畫出表面形狀 (圖 13-34)。

解答：考慮水在一個寬矩形渠道中的漸變流。要決定水在一個指

定位置上的正常與臨界流動深度、流動型態和流動深度，並畫出

表面形狀。

假設：1. 渠道是寬的，並且流動是漸變的。2. 底面斜率是常數。3. 渠道溼面的粗糙度與摩擦係數是

常數。

性質：渠道的曼寧係數為 n=0.02。

解析：(a) 渠道是寬的，因此水力半徑等於流動深度，Rh ≅y。知道每單位寬度 (b=1 m) 的流率。正

常深度可用曼寧方程式決定為
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of the channel to a free outfall. The flow becomes critical before reaching 
the end of the channel, and the outfall controls the upstream flow past the 
hydraulic jump. The outfalling flow stream is supercritical. Note that uniform 
flow cannot be established in a horizontal channel since the gravity force 
has no component in the flow direction, and the flow is inertia-driven.

Numerical Solution of Surface Profile
The prediction of the surface profile y(x) is an important part of the design 
of open-channel systems. A good starting point for the determination of the 
surface profile is the identification of the points along the channel, called 
the control points, at which the flow depth can be calculated from a knowl-
edge of flow rate. For example, the flow depth at a section of a rectangular 
channel where critical flow occurs, called the critical point, is determined 
from yc � (V

#
2/gb2)1/3. The normal depth yn, which is the flow depth reached 

when uniform flow is established, also serves as a control point. Once flow 
depths at control points are available, the surface profile upstream or down-
stream is determined usually by numerical integration of the nonlinear dif-
ferential equation (Eq. 13–65, repeated here)

 
dy
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S0 2Sf

1 2Fr2 (13–66)

The friction slope Sf is determined from the uniform-flow conditions, and 
the Froude number from a relation appropriate for the channel cross section.

EXAMPLE 13–6    Gradually Varied Flow with M1 Surface Profile

Gradually varied flow of water in a wide rectangular channel with a per-unit-
width flow rate of 1 m3/s�m and a Manning coefficient of n � 0.02 is con-
sidered. The slope of the channel is 0.001, and at the location x � 0, the 
flow depth is measured to be 0.8 m. (a) Determine the normal and critical 
depths of the flow and classify the water surface profile, and (b) calculate 
the flow depth y at x � 1000 m by integrating the GVF equation numerically 
over the range 0 � x � 1000 m. Repeat part (b) to obtain the flow depths 
for different x values, and plot the surface profile (Fig. 13–34).

SOLUTION  Gradually varied flow of water in a wide rectangular channel is 
considered. The normal and critical flow depths, the flow type, and the flow 
depth at a specified location are to be determined, and the surface profile is 
to be plotted.
Assumptions  1 The channel is wide, and the flow is gradually varied. 2 The 
bottom slope is constant. 3 The roughness of the wetted surface of the chan-
nel and thus the friction coefficient are constant.
Properties  The Manning coefficient of the channel is given to be n � 0.02.
Analysis  (a) The channel is said to be wide, and thus the hydraulic radius is 
equal to the flow depth, Rh � y. Knowing the flow rate per unit width (b � 1 m), 
the normal depth is determined from the Manning equation to be
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FIGURE 13–34
Schematic for Example 13–6.
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此流動的臨界深度是

755
CHAPTER 13

The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
V
#

2

g(by)2 S yc 5 a (V
#
/b)2

g
b

1/3

5 a (1 m2/s)2

(9.81 m/s2)
b

1/3

5 0.47 m

Noting that yc � yn � y at x � 0, we see from Table 13-3 that the water 
surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) � 0.8 m, the flow depth y at any x 
location is determined by numerical integration of the GVF equation

dy

dx
5

S0 2 Sf

1 2 Fr2

where the Froude number for a wide rectangular channel is

Fr 5
V

"gy
5

V
#
/by

"gy
5

V
#
/b

"gy3

and the friction slop is determined from the uniform-flow equation by setting 
S0 � Sf,
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Substituting, the GVF equation for a wide rectangular channel becomes

dy

dx
5

S0 2 (V
#
/b)2n2/(a2y10/3)

1 2 (V
#
/b)2/(gy3)

which is highly nonlinear, and thus it is difficult (if not impossible) to inte-
grate analytically. Fortunately, nowadays solving nonlinear differential equa-
tions by integrating such nonlinear equations numerically using a program 
like EES or Matlab is easy. With this mind, the solution of the nonlinear 
first order differential equation subject to the initial condition y (x1) � y1 is 
ex pressed as

y 5 y1 1 #
x2

x1

f(x,y)dx where f(x,y) 5
S0 2 (V

#
/b)2n2/(a2y10/3)

1 2 (V
#
/b)2/(gy3)

and where y � y (x) is the water depth at the specified location x. For given 
numerical values, this problem can be solved using EES as follows:

Vol � 1 “m^3/s, volume flow rate per unit width, b � 1 m”
b � 1 “m, width of channel”
n � 0.02 “Manning coefficient”
S_0 � 0.001 “slope of channel”
g � 9.81 “gravitational acceleration, m/s^2”

x1 � 0; y1=0.8 “m, initial condition”
x2 � 1000 “m, length of channel”

f_xy � (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 
to be integrated”
y � y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 
gives the water depth at a location of 1000 m,
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注意在 x=0，yc <yn <y，我們從表 13-3 看出在此 GVF 中水的表面形狀被歸類為 M1。

(b) 知道起始條件 y(0)=0.8 m，任何 x 位置的流動深度是由數值積分 GVF 方程式來決定的，
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Noting that yc � yn � y at x � 0, we see from Table 13-3 that the water 
surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) � 0.8 m, the flow depth y at any x 
location is determined by numerical integration of the GVF equation
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which is highly nonlinear, and thus it is difficult (if not impossible) to inte-
grate analytically. Fortunately, nowadays solving nonlinear differential equa-
tions by integrating such nonlinear equations numerically using a program 
like EES or Matlab is easy. With this mind, the solution of the nonlinear 
first order differential equation subject to the initial condition y (x1) � y1 is 
ex pressed as
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and where y � y (x) is the water depth at the specified location x. For given 
numerical values, this problem can be solved using EES as follows:

Vol � 1 “m^3/s, volume flow rate per unit width, b � 1 m”
b � 1 “m, width of channel”
n � 0.02 “Manning coefficient”
S_0 � 0.001 “slope of channel”
g � 9.81 “gravitational acceleration, m/s^2”

x1 � 0; y1=0.8 “m, initial condition”
x2 � 1000 “m, length of channel”

f_xy � (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 
to be integrated”
y � y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 
gives the water depth at a location of 1000 m,
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the GVF problem discussed in 
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其中福勞數對一個寬矩形渠道是
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Noting that yc � yn � y at x � 0, we see from Table 13-3 that the water 
surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) � 0.8 m, the flow depth y at any x 
location is determined by numerical integration of the GVF equation
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Substituting, the GVF equation for a wide rectangular channel becomes
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which is highly nonlinear, and thus it is difficult (if not impossible) to inte-
grate analytically. Fortunately, nowadays solving nonlinear differential equa-
tions by integrating such nonlinear equations numerically using a program 
like EES or Matlab is easy. With this mind, the solution of the nonlinear 
first order differential equation subject to the initial condition y (x1) � y1 is 
ex pressed as
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and where y � y (x) is the water depth at the specified location x. For given 
numerical values, this problem can be solved using EES as follows:

Vol � 1 “m^3/s, volume flow rate per unit width, b � 1 m”
b � 1 “m, width of channel”
n � 0.02 “Manning coefficient”
S_0 � 0.001 “slope of channel”
g � 9.81 “gravitational acceleration, m/s^2”

x1 � 0; y1=0.8 “m, initial condition”
x2 � 1000 “m, length of channel”

f_xy � (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 
to be integrated”
y � y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 
gives the water depth at a location of 1000 m,

y(x2) 5 y(1000 m) 5 1.44 m
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而摩擦斜率是從均勻流方程式令 S0 =Sf 來決定的，
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Noting that yc � yn � y at x � 0, we see from Table 13-3 that the water 
surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) � 0.8 m, the flow depth y at any x 
location is determined by numerical integration of the GVF equation
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where the Froude number for a wide rectangular channel is

Fr 5
V

"gy
5

V
#
/by

"gy
5

V
#
/b

"gy3

and the friction slop is determined from the uniform-flow equation by setting 
S0 � Sf,

V
#
5

a
n

by5/3S1/2
f S Sf 5 a (V

#
/b)n

ay5/3 b
2

5
(V
#
/b)2n2

a2y10/3

Substituting, the GVF equation for a wide rectangular channel becomes
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which is highly nonlinear, and thus it is difficult (if not impossible) to inte-
grate analytically. Fortunately, nowadays solving nonlinear differential equa-
tions by integrating such nonlinear equations numerically using a program 
like EES or Matlab is easy. With this mind, the solution of the nonlinear 
first order differential equation subject to the initial condition y (x1) � y1 is 
ex pressed as
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and where y � y (x) is the water depth at the specified location x. For given 
numerical values, this problem can be solved using EES as follows:

Vol � 1 “m^3/s, volume flow rate per unit width, b � 1 m”
b � 1 “m, width of channel”
n � 0.02 “Manning coefficient”
S_0 � 0.001 “slope of channel”
g � 9.81 “gravitational acceleration, m/s^2”

x1 � 0; y1=0.8 “m, initial condition”
x2 � 1000 “m, length of channel”

f_xy � (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 
to be integrated”
y � y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 
gives the water depth at a location of 1000 m,

y(x2) 5 y(1000 m) 5 1.44 m
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圖 13-34　例題 13-6 的示意圖。

754
OPEN-CHANNEL FLOW

of the channel to a free outfall. The flow becomes critical before reaching 
the end of the channel, and the outfall controls the upstream flow past the 
hydraulic jump. The outfalling flow stream is supercritical. Note that uniform 
flow cannot be established in a horizontal channel since the gravity force 
has no component in the flow direction, and the flow is inertia-driven.

Numerical Solution of Surface Profile
The prediction of the surface profile y(x) is an important part of the design 
of open-channel systems. A good starting point for the determination of the 
surface profile is the identification of the points along the channel, called 
the control points, at which the flow depth can be calculated from a knowl-
edge of flow rate. For example, the flow depth at a section of a rectangular 
channel where critical flow occurs, called the critical point, is determined 
from yc � (V

#
2/gb2)1/3. The normal depth yn, which is the flow depth reached 

when uniform flow is established, also serves as a control point. Once flow 
depths at control points are available, the surface profile upstream or down-
stream is determined usually by numerical integration of the nonlinear dif-
ferential equation (Eq. 13–65, repeated here)

 
dy

dx
5

S0 2Sf

1 2Fr2 (13–66)

The friction slope Sf is determined from the uniform-flow conditions, and 
the Froude number from a relation appropriate for the channel cross section.

EXAMPLE 13–6    Gradually Varied Flow with M1 Surface Profile

Gradually varied flow of water in a wide rectangular channel with a per-unit-
width flow rate of 1 m3/s�m and a Manning coefficient of n � 0.02 is con-
sidered. The slope of the channel is 0.001, and at the location x � 0, the 
flow depth is measured to be 0.8 m. (a) Determine the normal and critical 
depths of the flow and classify the water surface profile, and (b) calculate 
the flow depth y at x � 1000 m by integrating the GVF equation numerically 
over the range 0 � x � 1000 m. Repeat part (b) to obtain the flow depths 
for different x values, and plot the surface profile (Fig. 13–34).

SOLUTION  Gradually varied flow of water in a wide rectangular channel is 
considered. The normal and critical flow depths, the flow type, and the flow 
depth at a specified location are to be determined, and the surface profile is 
to be plotted.
Assumptions  1 The channel is wide, and the flow is gradually varied. 2 The 
bottom slope is constant. 3 The roughness of the wetted surface of the chan-
nel and thus the friction coefficient are constant.
Properties  The Manning coefficient of the channel is given to be n � 0.02.
Analysis  (a) The channel is said to be wide, and thus the hydraulic radius is 
equal to the flow depth, Rh � y. Knowing the flow rate per unit width (b � 1 m), 
the normal depth is determined from the Manning equation to be
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FIGURE 13–34
Schematic for Example 13–6.
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底面斜率，S0 =0.001



34 流 體 力 學

代入，對一個寬矩形渠道的 GVF 方程式變成
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Noting that yc � yn � y at x � 0, we see from Table 13-3 that the water 
surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) � 0.8 m, the flow depth y at any x 
location is determined by numerical integration of the GVF equation
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and the friction slop is determined from the uniform-flow equation by setting 
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Substituting, the GVF equation for a wide rectangular channel becomes

dy

dx
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S0 2 (V
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/b)2n2/(a2y10/3)

1 2 (V
#
/b)2/(gy3)

which is highly nonlinear, and thus it is difficult (if not impossible) to inte-
grate analytically. Fortunately, nowadays solving nonlinear differential equa-
tions by integrating such nonlinear equations numerically using a program 
like EES or Matlab is easy. With this mind, the solution of the nonlinear 
first order differential equation subject to the initial condition y (x1) � y1 is 
ex pressed as

y 5 y1 1 #
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f(x,y)dx where f(x,y) 5
S0 2 (V
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and where y � y (x) is the water depth at the specified location x. For given 
numerical values, this problem can be solved using EES as follows:

Vol � 1 “m^3/s, volume flow rate per unit width, b � 1 m”
b � 1 “m, width of channel”
n � 0.02 “Manning coefficient”
S_0 � 0.001 “slope of channel”
g � 9.81 “gravitational acceleration, m/s^2”

x1 � 0; y1=0.8 “m, initial condition”
x2 � 1000 “m, length of channel”

f_xy � (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 
to be integrated”
y � y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 
gives the water depth at a location of 1000 m,

y(x2) 5 y(1000 m) 5 1.44 m
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FIGURE 13–35
Flow depth and surface profile for 

the GVF problem discussed in 
Example 13–6.
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這是高度非線性的，因此要用解析方法積分非常困難 (如果不是

不可能)。幸運地，現在用像 EES 或 Matlab 這樣的程式使用數值

方法來解這樣的非線性方程式是容易的。了解這一點，一階非線

性微分方程式受起始條件 y(x1)=y1 支配的解被表示為
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Noting that yc � yn � y at x � 0, we see from Table 13-3 that the water 
surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) � 0.8 m, the flow depth y at any x 
location is determined by numerical integration of the GVF equation

dy

dx
5

S0 2 Sf

1 2 Fr2

where the Froude number for a wide rectangular channel is

Fr 5
V

"gy
5

V
#
/by

"gy
5

V
#
/b

"gy3

and the friction slop is determined from the uniform-flow equation by setting 
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Substituting, the GVF equation for a wide rectangular channel becomes
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which is highly nonlinear, and thus it is difficult (if not impossible) to inte-
grate analytically. Fortunately, nowadays solving nonlinear differential equa-
tions by integrating such nonlinear equations numerically using a program 
like EES or Matlab is easy. With this mind, the solution of the nonlinear 
first order differential equation subject to the initial condition y (x1) � y1 is 
ex pressed as
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and where y � y (x) is the water depth at the specified location x. For given 
numerical values, this problem can be solved using EES as follows:

Vol � 1 “m^3/s, volume flow rate per unit width, b � 1 m”
b � 1 “m, width of channel”
n � 0.02 “Manning coefficient”
S_0 � 0.001 “slope of channel”
g � 9.81 “gravitational acceleration, m/s^2”

x1 � 0; y1=0.8 “m, initial condition”
x2 � 1000 “m, length of channel”

f_xy � (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 
to be integrated”
y � y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 
gives the water depth at a location of 1000 m,
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其中
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Noting that yc � yn � y at x � 0, we see from Table 13-3 that the water 
surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) � 0.8 m, the flow depth y at any x 
location is determined by numerical integration of the GVF equation
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Substituting, the GVF equation for a wide rectangular channel becomes
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which is highly nonlinear, and thus it is difficult (if not impossible) to inte-
grate analytically. Fortunately, nowadays solving nonlinear differential equa-
tions by integrating such nonlinear equations numerically using a program 
like EES or Matlab is easy. With this mind, the solution of the nonlinear 
first order differential equation subject to the initial condition y (x1) � y1 is 
ex pressed as

y 5 y1 1 #
x2

x1
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and where y � y (x) is the water depth at the specified location x. For given 
numerical values, this problem can be solved using EES as follows:

Vol � 1 “m^3/s, volume flow rate per unit width, b � 1 m”
b � 1 “m, width of channel”
n � 0.02 “Manning coefficient”
S_0 � 0.001 “slope of channel”
g � 9.81 “gravitational acceleration, m/s^2”

x1 � 0; y1=0.8 “m, initial condition”
x2 � 1000 “m, length of channel”

f_xy � (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 
to be integrated”
y � y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 
gives the water depth at a location of 1000 m,

y(x2) 5 y(1000 m) 5 1.44 m
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FIGURE 13–35
Flow depth and surface profile for 

the GVF problem discussed in 
Example 13–6.
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其中 y =y(x) 是在指定 x 位置的水深。對於給定的數值，這個問

題可以用 EES 求解如下：

Vol = 1 “m^3/s, volume flow rate per unit width, b = 1 m”

b = 1 “m, width of channel”

n = 0.02 “Manning coefficient”

S_0 = 0.001 “slope of channel”

g = 9.81 “gravitational acceleration, m/s^2”

x1 = 0; y1=0.8 “m, initial condition”

x2 = 1000 “m, length of channel”

f_xy = (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF 

equation to be integrated”

y = y1+integral(f_xy, x, x1, x2) “integral equation with automatic step 

size.”

將以上的迷你程式拷貝到一個空的 EES 螢幕上，並計算得到在位

置 1000 m 的水深，

y(x2)=y(1000 m)=1.44 m

注意內建函數“integral”使用一個自動調整步長的方法在指定的

上下限之間進行數值積分。沿著渠道在不同位置的水深是在不同

的 x2 值上重複此計算而得到的。畫出結果得到顯示在圖 13-34 上

的表面形狀。使用 EES 的曲線擬合的特性，我們甚至可以將流動

深度數據曲線擬合成以下的二次多項式：

yapprox(x)=0.7930+0.0002789x+3.7727×10−7x2

可以證明從這個曲線擬合公式所得到的流動深度結果與圖表上的數據差異不超過 1%。

討論：圖形結果證實從表 13-3 所得到的定量預測，即一個 M1 形狀應該得到在往下游的方向水的深

度增加。這個問題也可以用其它程式解出，像 Matlab，使用給出在圖 13-36 的程式碼。

圖  13-35　在例題  13-6 中討論的 
GVF 問題的流動深度與表面形狀。
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The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
V
#

2

g(by)2 S yc 5 a (V
#
/b)2

g
b

1/3

5 a (1 m2/s)2

(9.81 m/s2)
b

1/3

5 0.47 m

Noting that yc � yn � y at x � 0, we see from Table 13-3 that the water 
surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) � 0.8 m, the flow depth y at any x 
location is determined by numerical integration of the GVF equation

dy

dx
5

S0 2 Sf

1 2 Fr2

where the Froude number for a wide rectangular channel is

Fr 5
V

"gy
5

V
#
/by

"gy
5

V
#
/b

"gy3

and the friction slop is determined from the uniform-flow equation by setting 
S0 � Sf,

V
#
5

a
n

by5/3S1/2
f S Sf 5 a (V

#
/b)n

ay5/3 b
2

5
(V
#
/b)2n2

a2y10/3

Substituting, the GVF equation for a wide rectangular channel becomes

dy

dx
5

S0 2 (V
#
/b)2n2/(a2y10/3)

1 2 (V
#
/b)2/(gy3)

which is highly nonlinear, and thus it is difficult (if not impossible) to inte-
grate analytically. Fortunately, nowadays solving nonlinear differential equa-
tions by integrating such nonlinear equations numerically using a program 
like EES or Matlab is easy. With this mind, the solution of the nonlinear 
first order differential equation subject to the initial condition y (x1) � y1 is 
ex pressed as

y 5 y1 1 #
x2

x1

f(x,y)dx where f(x,y) 5
S0 2 (V

#
/b)2n2/(a2y10/3)

1 2 (V
#
/b)2/(gy3)

and where y � y (x) is the water depth at the specified location x. For given 
numerical values, this problem can be solved using EES as follows:

Vol � 1 “m^3/s, volume flow rate per unit width, b � 1 m”
b � 1 “m, width of channel”
n � 0.02 “Manning coefficient”
S_0 � 0.001 “slope of channel”
g � 9.81 “gravitational acceleration, m/s^2”

x1 � 0; y1=0.8 “m, initial condition”
x2 � 1000 “m, length of channel”

f_xy � (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 
to be integrated”
y � y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 
gives the water depth at a location of 1000 m,

y(x2) 5 y(1000 m) 5 1.44 m
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FIGURE 13–35
Flow depth and surface profile for 

the GVF problem discussed in 
Example 13–6.
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沿渠道的距離，
m 水深，m

圖 13-36　求解例題 13-6 的 GVF 問
題的一個 Matlab 程式。
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Note that the built-in function “integral” performs integrations numerically 
between specified limits using an automatically adjusted step size. Water 
depths at different locations along the channel are obtained by repeating the 
calculations at different x2 values. Plotting the results gives the surface pro-
file, as shown in Fig. 13–34. Using the curve-fit feature of EES, we can even 
curve-fit the flow depth data into the following second-order polynomial,

yapprox(x) 5 0.7930 1 0.0002789x 1 3.7727 3 1027x2

It can be shown that the flow depth results obtained from this curve-fit 
formula do not differ from tabulated data by more than 1 percent.
Discussion  The graphical result confirms the quantitative prediction from 
Table 13–3 that an M1 profile should yield increasing water depth in the 
downstream direction. This problem can also be solved using other programs, 
like Matlab, using the code given in Fig. 13–36.

EXAMPLE 13–7    Classification of Channel Slope

Water is flowing uniformly in a rectangular open channel with unfinished-
concrete surfaces. The channel width is 6 m, the flow depth is 2 m, and 
the bottom slope is 0.004. Determine if the channel should be classified as 
mild, critical, or steep for this flow (Fig. 13–37).

SOLUTION  Water is flowing uniformly in an open channel. It is to be deter-
mined whether the channel slope is mild, critical, or steep for this flow.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius are

 Ac 5 yb 5 (2 m)(6 m) 5 12 m2

 p 5 b 1 2y 5 6 m 1 2(2 m) 5 10 m

 Rh 5
Ac

p
5

12 m2

10 m
5 1.2 m

The flow rate is determined from the Manning equation to be

V
#
5

a
n

 AcR
2/3
h S1/2

0 5
1 m1/3/s

0.014
 (12 m2)(1.2 m)2/3(0.004)1/2 5 61.2 m3/s

Noting that the flow is uniform, the specified flow rate is the normal depth 
and thus y � yn � 2 m. The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
(61.2 m3/s)2

(9.81 m/s2)(12 m2)2 5 2.65 m

This channel at these flow conditions is classified as steep since yn � yc, 
and the flow is supercritical.
Discussion  If the flow depth were greater than 2.65 m, the channel slope 
would be said to be mild. Therefore, the bottom slope alone is not sufficient 
to classify a downhill channel as being mild, critical, or steep.

clear all
domain=[0 1000]; % limits on integral
s0=.001; % channel slope
n=.02; % Manning roughness
q=1; % per-unit-width flowrate
g=9.81; % gravity (SI)
y0=.8; % initial condition on depth
[X,Y]=ode45(‘simple_flow_derivative’, 
[domain(1) domain (end)],y0,
[],s0,n,q,g,domain);

plot (X, Y, ‘k’)
axis([0 1000 0 max(Y)])
xlabel(‘x (m)’);ylabel(‘y (m)’);
**************

function
yprime=simple_flow_
derivative(x,y,flag,s0, n,q,g, (domain)
yprime=(s0-n.^2*q.^2./y.^(10/3))./(1- 
q.^2/g./y.^3);

FIGURE 13–36
A Matlab program for solving the 
GVF problem of Example 13–6.

�
b
2

b � 6 m

S0 � 0.004

y � 2 m

FIGURE 13–37
Schematic for Example 13–7.

725-786_cengel_ch13.indd   756 7/2/13   6:58 PM



第 13 章　明渠流 35

 例題 13-7　　渠道斜率的分類

水在一個有粗製混凝土表面的矩形明渠中均勻的流動。渠道寬度 

6 m，流動深度 2 m，且底面斜率是 0.004。試決定此流動的渠道

應該被分類為溫和的、臨界的或是陡峭的 (圖 13-37)。

解答：水在一個明渠中均勻的流動。要決定這個流動的渠道是溫

和、臨界的或陡峭的。

假設：1. 流動是穩定且均勻的。2. 底面斜率是常數。3. 渠道溼面

的粗糙度不變，因此摩擦係數是常數。

性質：對一個粗製混凝土表面的明渠，其曼寧係數是 n=0.014。

解析：截面積、周長與水力半徑為
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Note that the built-in function “integral” performs integrations numerically 
between specified limits using an automatically adjusted step size. Water 
depths at different locations along the channel are obtained by repeating the 
calculations at different x2 values. Plotting the results gives the surface pro-
file, as shown in Fig. 13–34. Using the curve-fit feature of EES, we can even 
curve-fit the flow depth data into the following second-order polynomial,

yapprox(x) 5 0.7930 1 0.0002789x 1 3.7727 3 1027x2

It can be shown that the flow depth results obtained from this curve-fit 
formula do not differ from tabulated data by more than 1 percent.
Discussion  The graphical result confirms the quantitative prediction from 
Table 13–3 that an M1 profile should yield increasing water depth in the 
downstream direction. This problem can also be solved using other programs, 
like Matlab, using the code given in Fig. 13–36.

EXAMPLE 13–7    Classification of Channel Slope

Water is flowing uniformly in a rectangular open channel with unfinished-
concrete surfaces. The channel width is 6 m, the flow depth is 2 m, and 
the bottom slope is 0.004. Determine if the channel should be classified as 
mild, critical, or steep for this flow (Fig. 13–37).

SOLUTION  Water is flowing uniformly in an open channel. It is to be deter-
mined whether the channel slope is mild, critical, or steep for this flow.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius are

 Ac 5 yb 5 (2 m)(6 m) 5 12 m2

 p 5 b 1 2y 5 6 m 1 2(2 m) 5 10 m

 Rh 5
Ac

p
5

12 m2

10 m
5 1.2 m

The flow rate is determined from the Manning equation to be

V
#
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a
n
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2/3
h S1/2

0 5
1 m1/3/s

0.014
 (12 m2)(1.2 m)2/3(0.004)1/2 5 61.2 m3/s

Noting that the flow is uniform, the specified flow rate is the normal depth 
and thus y � yn � 2 m. The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
(61.2 m3/s)2

(9.81 m/s2)(12 m2)2 5 2.65 m

This channel at these flow conditions is classified as steep since yn � yc, 
and the flow is supercritical.
Discussion  If the flow depth were greater than 2.65 m, the channel slope 
would be said to be mild. Therefore, the bottom slope alone is not sufficient 
to classify a downhill channel as being mild, critical, or steep.

clear all
domain=[0 1000]; % limits on integral
s0=.001; % channel slope
n=.02; % Manning roughness
q=1; % per-unit-width flowrate
g=9.81; % gravity (SI)
y0=.8; % initial condition on depth
[X,Y]=ode45(‘simple_flow_derivative’, 
[domain(1) domain (end)],y0,
[],s0,n,q,g,domain);

plot (X, Y, ‘k’)
axis([0 1000 0 max(Y)])
xlabel(‘x (m)’);ylabel(‘y (m)’);
**************

function
yprime=simple_flow_
derivative(x,y,flag,s0, n,q,g, (domain)
yprime=(s0-n.^2*q.^2./y.^(10/3))./(1- 
q.^2/g./y.^3);

FIGURE 13–36
A Matlab program for solving the 
GVF problem of Example 13–6.

�
b
2

b � 6 m

S0 � 0.004

y � 2 m

FIGURE 13–37
Schematic for Example 13–7.

725-786_cengel_ch13.indd   756 7/2/13   6:58 PM

流率用曼寧方程式決定為
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Note that the built-in function “integral” performs integrations numerically 
between specified limits using an automatically adjusted step size. Water 
depths at different locations along the channel are obtained by repeating the 
calculations at different x2 values. Plotting the results gives the surface pro-
file, as shown in Fig. 13–34. Using the curve-fit feature of EES, we can even 
curve-fit the flow depth data into the following second-order polynomial,

yapprox(x) 5 0.7930 1 0.0002789x 1 3.7727 3 1027x2

It can be shown that the flow depth results obtained from this curve-fit 
formula do not differ from tabulated data by more than 1 percent.
Discussion  The graphical result confirms the quantitative prediction from 
Table 13–3 that an M1 profile should yield increasing water depth in the 
downstream direction. This problem can also be solved using other programs, 
like Matlab, using the code given in Fig. 13–36.

EXAMPLE 13–7    Classification of Channel Slope

Water is flowing uniformly in a rectangular open channel with unfinished-
concrete surfaces. The channel width is 6 m, the flow depth is 2 m, and 
the bottom slope is 0.004. Determine if the channel should be classified as 
mild, critical, or steep for this flow (Fig. 13–37).

SOLUTION  Water is flowing uniformly in an open channel. It is to be deter-
mined whether the channel slope is mild, critical, or steep for this flow.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius are

 Ac 5 yb 5 (2 m)(6 m) 5 12 m2

 p 5 b 1 2y 5 6 m 1 2(2 m) 5 10 m

 Rh 5
Ac

p
5

12 m2

10 m
5 1.2 m

The flow rate is determined from the Manning equation to be
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2/3
h S1/2

0 5
1 m1/3/s

0.014
 (12 m2)(1.2 m)2/3(0.004)1/2 5 61.2 m3/s

Noting that the flow is uniform, the specified flow rate is the normal depth 
and thus y � yn � 2 m. The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
(61.2 m3/s)2

(9.81 m/s2)(12 m2)2 5 2.65 m

This channel at these flow conditions is classified as steep since yn � yc, 
and the flow is supercritical.
Discussion  If the flow depth were greater than 2.65 m, the channel slope 
would be said to be mild. Therefore, the bottom slope alone is not sufficient 
to classify a downhill channel as being mild, critical, or steep.

clear all
domain=[0 1000]; % limits on integral
s0=.001; % channel slope
n=.02; % Manning roughness
q=1; % per-unit-width flowrate
g=9.81; % gravity (SI)
y0=.8; % initial condition on depth
[X,Y]=ode45(‘simple_flow_derivative’, 
[domain(1) domain (end)],y0,
[],s0,n,q,g,domain);

plot (X, Y, ‘k’)
axis([0 1000 0 max(Y)])
xlabel(‘x (m)’);ylabel(‘y (m)’);
**************

function
yprime=simple_flow_
derivative(x,y,flag,s0, n,q,g, (domain)
yprime=(s0-n.^2*q.^2./y.^(10/3))./(1- 
q.^2/g./y.^3);

FIGURE 13–36
A Matlab program for solving the 
GVF problem of Example 13–6.

�
b
2

b � 6 m

S0 � 0.004

y � 2 m

FIGURE 13–37
Schematic for Example 13–7.
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注意，此流動是均勻的，指定的流率是正常深度，因此 y=yn =2 m。

此流動的臨界深度是
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Note that the built-in function “integral” performs integrations numerically 
between specified limits using an automatically adjusted step size. Water 
depths at different locations along the channel are obtained by repeating the 
calculations at different x2 values. Plotting the results gives the surface pro-
file, as shown in Fig. 13–34. Using the curve-fit feature of EES, we can even 
curve-fit the flow depth data into the following second-order polynomial,

yapprox(x) 5 0.7930 1 0.0002789x 1 3.7727 3 1027x2

It can be shown that the flow depth results obtained from this curve-fit 
formula do not differ from tabulated data by more than 1 percent.
Discussion  The graphical result confirms the quantitative prediction from 
Table 13–3 that an M1 profile should yield increasing water depth in the 
downstream direction. This problem can also be solved using other programs, 
like Matlab, using the code given in Fig. 13–36.

EXAMPLE 13–7    Classification of Channel Slope

Water is flowing uniformly in a rectangular open channel with unfinished-
concrete surfaces. The channel width is 6 m, the flow depth is 2 m, and 
the bottom slope is 0.004. Determine if the channel should be classified as 
mild, critical, or steep for this flow (Fig. 13–37).

SOLUTION  Water is flowing uniformly in an open channel. It is to be deter-
mined whether the channel slope is mild, critical, or steep for this flow.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius are

 Ac 5 yb 5 (2 m)(6 m) 5 12 m2

 p 5 b 1 2y 5 6 m 1 2(2 m) 5 10 m

 Rh 5
Ac

p
5

12 m2

10 m
5 1.2 m

The flow rate is determined from the Manning equation to be
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h S1/2

0 5
1 m1/3/s

0.014
 (12 m2)(1.2 m)2/3(0.004)1/2 5 61.2 m3/s

Noting that the flow is uniform, the specified flow rate is the normal depth 
and thus y � yn � 2 m. The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
(61.2 m3/s)2

(9.81 m/s2)(12 m2)2 5 2.65 m

This channel at these flow conditions is classified as steep since yn � yc, 
and the flow is supercritical.
Discussion  If the flow depth were greater than 2.65 m, the channel slope 
would be said to be mild. Therefore, the bottom slope alone is not sufficient 
to classify a downhill channel as being mild, critical, or steep.

clear all
domain=[0 1000]; % limits on integral
s0=.001; % channel slope
n=.02; % Manning roughness
q=1; % per-unit-width flowrate
g=9.81; % gravity (SI)
y0=.8; % initial condition on depth
[X,Y]=ode45(‘simple_flow_derivative’, 
[domain(1) domain (end)],y0,
[],s0,n,q,g,domain);

plot (X, Y, ‘k’)
axis([0 1000 0 max(Y)])
xlabel(‘x (m)’);ylabel(‘y (m)’);
**************

function
yprime=simple_flow_
derivative(x,y,flag,s0, n,q,g, (domain)
yprime=(s0-n.^2*q.^2./y.^(10/3))./(1- 
q.^2/g./y.^3);

FIGURE 13–36
A Matlab program for solving the 
GVF problem of Example 13–6.
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b � 6 m

S0 � 0.004

y � 2 m

FIGURE 13–37
Schematic for Example 13–7.
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此渠道在這些流動條件下被分類為陡峭的，因為 yn <yc，且流動是超臨界的。

討論：如果流動深度大於 2.65 m，渠道斜率會被稱為溫和的。因為只有底面斜率並不足夠用來分類

一個下坡的渠道是溫和、臨界的或陡峭的。

圖 13-37　例題 13-7 的示意圖。
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Note that the built-in function “integral” performs integrations numerically 
between specified limits using an automatically adjusted step size. Water 
depths at different locations along the channel are obtained by repeating the 
calculations at different x2 values. Plotting the results gives the surface pro-
file, as shown in Fig. 13–34. Using the curve-fit feature of EES, we can even 
curve-fit the flow depth data into the following second-order polynomial,

yapprox(x) 5 0.7930 1 0.0002789x 1 3.7727 3 1027x2

It can be shown that the flow depth results obtained from this curve-fit 
formula do not differ from tabulated data by more than 1 percent.
Discussion  The graphical result confirms the quantitative prediction from 
Table 13–3 that an M1 profile should yield increasing water depth in the 
downstream direction. This problem can also be solved using other programs, 
like Matlab, using the code given in Fig. 13–36.

EXAMPLE 13–7    Classification of Channel Slope

Water is flowing uniformly in a rectangular open channel with unfinished-
concrete surfaces. The channel width is 6 m, the flow depth is 2 m, and 
the bottom slope is 0.004. Determine if the channel should be classified as 
mild, critical, or steep for this flow (Fig. 13–37).

SOLUTION  Water is flowing uniformly in an open channel. It is to be deter-
mined whether the channel slope is mild, critical, or steep for this flow.
Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-
stant. 3 The roughness of the wetted surface of the channel and thus the 
friction coefficient are constant.
Properties  The Manning coefficient for an open channel with unfinished-
concrete surfaces is n � 0.014.
Analysis  The cross-sectional area, perimeter, and hydraulic radius are

 Ac 5 yb 5 (2 m)(6 m) 5 12 m2

 p 5 b 1 2y 5 6 m 1 2(2 m) 5 10 m

 Rh 5
Ac

p
5

12 m2

10 m
5 1.2 m

The flow rate is determined from the Manning equation to be
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0.014
 (12 m2)(1.2 m)2/3(0.004)1/2 5 61.2 m3/s

Noting that the flow is uniform, the specified flow rate is the normal depth 
and thus y � yn � 2 m. The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
(61.2 m3/s)2

(9.81 m/s2)(12 m2)2 5 2.65 m

This channel at these flow conditions is classified as steep since yn � yc, 
and the flow is supercritical.
Discussion  If the flow depth were greater than 2.65 m, the channel slope 
would be said to be mild. Therefore, the bottom slope alone is not sufficient 
to classify a downhill channel as being mild, critical, or steep.

clear all
domain=[0 1000]; % limits on integral
s0=.001; % channel slope
n=.02; % Manning roughness
q=1; % per-unit-width flowrate
g=9.81; % gravity (SI)
y0=.8; % initial condition on depth
[X,Y]=ode45(‘simple_flow_derivative’, 
[domain(1) domain (end)],y0,
[],s0,n,q,g,domain);

plot (X, Y, ‘k’)
axis([0 1000 0 max(Y)])
xlabel(‘x (m)’);ylabel(‘y (m)’);
**************

function
yprime=simple_flow_
derivative(x,y,flag,s0, n,q,g, (domain)
yprime=(s0-n.^2*q.^2./y.^(10/3))./(1- 
q.^2/g./y.^3);

FIGURE 13–36
A Matlab program for solving the 
GVF problem of Example 13–6.

�
b
2

b � 6 m

S0 � 0.004

y � 2 m

FIGURE 13–37
Schematic for Example 13–7.
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13-8　急變流與水躍

明渠中的流動如果流動深度在一個相當短的距離變化非常

明顯時被稱為急變流 (RVF) (圖 13-38)。例如發生在水閘門、寬

頂堰、銳緣堰、瀑布與在渠道擴張或收縮的過渡段。渠道截面

的變化是急變流的一個原因。但是有一些急變流，發生在即使

渠道截面是常數的區域，例如通過水閘門的流動。

急變流一般都非常複雜，因為它們事實上可能包括可觀的

多維度與暫態效應、逆流與流動分離 (圖 13-39)。因此急變流通
圖 13-38　流動有突然變化時會發生
急變流，例如截面積的突然改變。
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Recall that flow in open channels is called rapidly varied flow (RVF) if 
the flow depth changes markedly over a relatively short distance in the flow 
direction (Fig. 13–38). Such flows occur in sluice gates, broad- or sharp-
crested weirs, waterfalls, and the transition sections of channels for expan-
sion and contraction. A change in the cross section of the channel is one 
cause of rapidly varied flow. But some rapidly varied flows, such as flow 
through a sluice gate, occur even in regions where the channel cross section 
is constant.
 Rapidly varied flows are typically complicated by the fact that they may 
involve significant multidimensional and transient effects, backflows, and 
flow separation (Fig. 13–39). Therefore, rapidly varied flows are usually 
studied experimentally or numerically. But despite these complexities, it is 
still possible to analyze some rapidly varied flows using the one-dimensional 
flow approximation with reasonable accuracy.
 The flow in steep channels may be supercritical, and the flow must change 
to subcritical if the channel can no longer sustain supercritical flow due to a 
reduced slope of the channel or increased frictional effects. Any such change 
from supercritical to subcritical flow occurs through a hydraulic jump. 
A hydraulic jump involves considerable mixing and agitation, and thus a 
significant amount of mechanical energy dissipation.
 Consider steady flow through a control volume that encloses the hydraulic 
jump, as shown in Fig. 13–39. To make a simple analysis possible, we make 
the following approximations:

1. The velocity is nearly constant across the channel at sections 1 and 2,
and therefore the momentum-flux correction factors are �1 � �2 � 1.

2. The pressure in the liquid varies hydrostatically, and we consider gage
pressure only since atmospheric pressure acts on all surfaces and its
effect cancels out.

3. The wall shear stress and its associated losses are negligible relative
to the losses that occur during the hydraulic jump due to the intense
agitation.

4. The channel is wide and horizontal.
5. There are no external or body forces other than gravity.

For a channel of width b, the conservation of mass relation m
.

2 � m
.

1 is 
expressed as �y1bV1 � �y2bV2 or

y1V1 5 y2V2 (13–67)

Noting that the only forces acting on the control volume in the horizontal 

x-direction are the pressure forces, the momentum equation aF
S
5 a

out
bm# V

S
 2

 a
in
bm# V

S
 in the x-direction becomes a balance between hydrostatic pressure 

forces and momentum transfer,

P1, avg A1 2 P2, avg A2 5 m# V2 2 m# V1 (13–68)

FIGURE 13–38
Rapidly varied flow occurs when there 
is a sudden change in flow, such as an 

abrupt change in cross section.

FIGURE 13–39
When riding the rapids, a kayaker 

encounters several features of both 
gradually varied flow (GVF) and 

rapidly varied flow (RVF), with the 
latter being more exciting.

© Karl Weatherly/Getty RF
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36 流 體 力 學

常用實驗的或數值的方法研究。但是不管這些複雜性，仍然有

可能用一維的流動近似以合理的正確性分析某些急變流。

在陡峭渠道中的流動可能是超臨界的，如果由於渠道降低

斜率或增加摩擦效應而不再能夠維持超臨界流，則流動必須變

成次臨界的。任何這種從超臨界到次臨界的變化都是通過水躍

發生的。水躍包含可觀的混合與攪動，因此會有相當可觀的機

械能量耗散。

考慮通過一個包含水躍的控制體積的穩定流，如圖 13-40 

所示。為了使一個簡單的分析變成是可能的，我們作以下的近

似：

1.  在渠道的截面 1 與 2 的速度幾乎是常數，因此動量通量修正

因子是 b1 =b2 ≅1。

2.  液體中的壓力呈靜水壓力分佈，並且我們只考慮錶壓，因為

大氣壓作用在所有表面上且其影響互相抵消。

3.  壁面剪應力及其有關的損失相對於水躍中由於劇烈攪動的損

失是可忽略的。

4.  渠道是寬而水平的。

5. 除了重力以外，沒有外力或物體力。

對一個寬度 b 的渠道，質量守恆關係式 ⋅m1 = ⋅m2 被表示為

ry1bV1 =ry2bV2 或

 y1V1 =y2V2 (13-67)

注意作用在控制體積水平的 x- 方向的唯一力是壓力，動量方程

式 
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Recall that flow in open channels is called rapidly varied flow (RVF) if 
the flow depth changes markedly over a relatively short distance in the flow 
direction (Fig. 13–38). Such flows occur in sluice gates, broad- or sharp-
crested weirs, waterfalls, and the transition sections of channels for expan-
sion and contraction. A change in the cross section of the channel is one 
cause of rapidly varied flow. But some rapidly varied flows, such as flow 
through a sluice gate, occur even in regions where the channel cross section 
is constant.
 Rapidly varied flows are typically complicated by the fact that they may 
involve significant multidimensional and transient effects, backflows, and 
flow separation (Fig. 13–39). Therefore, rapidly varied flows are usually 
studied experimentally or numerically. But despite these complexities, it is 
still possible to analyze some rapidly varied flows using the one-dimensional 
flow approximation with reasonable accuracy.
 The flow in steep channels may be supercritical, and the flow must change 
to subcritical if the channel can no longer sustain supercritical flow due to a 
reduced slope of the channel or increased frictional effects. Any such change 
from supercritical to subcritical flow occurs through a hydraulic jump. 
A hydraulic jump involves considerable mixing and agitation, and thus a 
significant amount of mechanical energy dissipation.
 Consider steady flow through a control volume that encloses the hydraulic 
jump, as shown in Fig. 13–39. To make a simple analysis possible, we make 
the following approximations:

1. The velocity is nearly constant across the channel at sections 1 and 2,
and therefore the momentum-flux correction factors are �1 � �2 � 1.

2. The pressure in the liquid varies hydrostatically, and we consider gage
pressure only since atmospheric pressure acts on all surfaces and its
effect cancels out.

3. The wall shear stress and its associated losses are negligible relative
to the losses that occur during the hydraulic jump due to the intense
agitation.

4. The channel is wide and horizontal.
5. There are no external or body forces other than gravity.

For a channel of width b, the conservation of mass relation m
.

2 � m
.

1 is 
expressed as �y1bV1 � �y2bV2 or

y1V1 5 y2V2 (13–67)

Noting that the only forces acting on the control volume in the horizontal 

x-direction are the pressure forces, the momentum equation aF
S
5 a

out
bm# V

S
 2

 a
in
bm# V

S
 in the x-direction becomes a balance between hydrostatic pressure 

forces and momentum transfer,

P1, avg A1 2 P2, avg A2 5 m# V2 2 m# V1 (13–68)

FIGURE 13–38
Rapidly varied flow occurs when there 
is a sudden change in flow, such as an 

abrupt change in cross section.

FIGURE 13–39
When riding the rapids, a kayaker 

encounters several features of both 
gradually varied flow (GVF) and 

rapidly varied flow (RVF), with the 
latter being more exciting.

© Karl Weatherly/Getty RF
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Recall that flow in open channels is called rapidly varied flow (RVF) if 
the flow depth changes markedly over a relatively short distance in the flow 
direction (Fig. 13–38). Such flows occur in sluice gates, broad- or sharp-
crested weirs, waterfalls, and the transition sections of channels for expan-
sion and contraction. A change in the cross section of the channel is one 
cause of rapidly varied flow. But some rapidly varied flows, such as flow 
through a sluice gate, occur even in regions where the channel cross section 
is constant.
 Rapidly varied flows are typically complicated by the fact that they may 
involve significant multidimensional and transient effects, backflows, and 
flow separation (Fig. 13–39). Therefore, rapidly varied flows are usually 
studied experimentally or numerically. But despite these complexities, it is 
still possible to analyze some rapidly varied flows using the one-dimensional 
flow approximation with reasonable accuracy.
 The flow in steep channels may be supercritical, and the flow must change 
to subcritical if the channel can no longer sustain supercritical flow due to a 
reduced slope of the channel or increased frictional effects. Any such change 
from supercritical to subcritical flow occurs through a hydraulic jump. 
A hydraulic jump involves considerable mixing and agitation, and thus a 
significant amount of mechanical energy dissipation.
 Consider steady flow through a control volume that encloses the hydraulic 
jump, as shown in Fig. 13–39. To make a simple analysis possible, we make 
the following approximations:

1. The velocity is nearly constant across the channel at sections 1 and 2,
and therefore the momentum-flux correction factors are �1 � �2 � 1.

2. The pressure in the liquid varies hydrostatically, and we consider gage
pressure only since atmospheric pressure acts on all surfaces and its
effect cancels out.

3. The wall shear stress and its associated losses are negligible relative
to the losses that occur during the hydraulic jump due to the intense
agitation.

4. The channel is wide and horizontal.
5. There are no external or body forces other than gravity.

For a channel of width b, the conservation of mass relation m
.

2 � m
.

1 is 
expressed as �y1bV1 � �y2bV2 or

y1V1 5 y2V2 (13–67)

Noting that the only forces acting on the control volume in the horizontal 

x-direction are the pressure forces, the momentum equation aF
S
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forces and momentum transfer,
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Rapidly varied flow occurs when there 
is a sudden change in flow, such as an 

abrupt change in cross section.

FIGURE 13–39
When riding the rapids, a kayaker 

encounters several features of both 
gradually varied flow (GVF) and 

rapidly varied flow (RVF), with the 
latter being more exciting.
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 在 x- 方向變成是靜水壓力與動

量傳遞之間的平衡，
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Recall that flow in open channels is called rapidly varied flow (RVF) if 
the flow depth changes markedly over a relatively short distance in the flow 
direction (Fig. 13–38). Such flows occur in sluice gates, broad- or sharp-
crested weirs, waterfalls, and the transition sections of channels for expan-
sion and contraction. A change in the cross section of the channel is one 
cause of rapidly varied flow. But some rapidly varied flows, such as flow 
through a sluice gate, occur even in regions where the channel cross section 
is constant.
 Rapidly varied flows are typically complicated by the fact that they may 
involve significant multidimensional and transient effects, backflows, and 
flow separation (Fig. 13–39). Therefore, rapidly varied flows are usually 
studied experimentally or numerically. But despite these complexities, it is 
still possible to analyze some rapidly varied flows using the one-dimensional 
flow approximation with reasonable accuracy.
 The flow in steep channels may be supercritical, and the flow must change 
to subcritical if the channel can no longer sustain supercritical flow due to a 
reduced slope of the channel or increased frictional effects. Any such change 
from supercritical to subcritical flow occurs through a hydraulic jump. 
A hydraulic jump involves considerable mixing and agitation, and thus a 
significant amount of mechanical energy dissipation.
 Consider steady flow through a control volume that encloses the hydraulic 
jump, as shown in Fig. 13–39. To make a simple analysis possible, we make 
the following approximations:

1. The velocity is nearly constant across the channel at sections 1 and 2,
and therefore the momentum-flux correction factors are �1 � �2 � 1.

2. The pressure in the liquid varies hydrostatically, and we consider gage
pressure only since atmospheric pressure acts on all surfaces and its
effect cancels out.

3. The wall shear stress and its associated losses are negligible relative
to the losses that occur during the hydraulic jump due to the intense
agitation.

4. The channel is wide and horizontal.
5. There are no external or body forces other than gravity.

For a channel of width b, the conservation of mass relation m
.

2 � m
.

1 is 
expressed as �y1bV1 � �y2bV2 or

y1V1 5 y2V2 (13–67)

Noting that the only forces acting on the control volume in the horizontal 

x-direction are the pressure forces, the momentum equation aF
S
5 a

out
bm# V

S
 2

 a
in
bm# V

S
 in the x-direction becomes a balance between hydrostatic pressure 

forces and momentum transfer,

P1, avg A1 2 P2, avg A2 5 m# V2 2 m# V1 (13–68)

FIGURE 13–38
Rapidly varied flow occurs when there 
is a sudden change in flow, such as an 

abrupt change in cross section.

FIGURE 13–39
When riding the rapids, a kayaker 

encounters several features of both 
gradually varied flow (GVF) and 

rapidly varied flow (RVF), with the 
latter being more exciting.
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 (13-68)

其中 P1, avg =rgy1/2 及 P2, avg =rgy2/2。對於一個渠道寬度 b，我

們有 A1 =y1b、A2 =y2b 及  ⋅m= ⋅m2 = ⋅m1 =rA1V1 =ry1bV1。代入並簡化，動量方程式

變成
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
A1 � y1b, A2 � y2b, and m

.
 � m

.
2 � m

.
1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to

y2
1 2 y2

2 5
2y1V1

g
 (V2 2 V1) (13–69)

Eliminating V2 by using V2 � (y1/y2)V1 from Eq. 13–67 gives

y2
1 2 y2

2 5
2y1V 1

2

gy2
 (y1 2 y2) (13–70)

Canceling the common factor y1 � y2 from both sides and rearranging give

ay2

y1
b

2

1
y2

y1
2 2Fr2

1 5 0 (13–71)

where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be

Depth ratio: 
y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B (13–72)

The energy equation (Eq. 13–30) for this horizontal flow section is

y1 1
V 

2
1

2g
5 y2 1

V 2
2

2g
1 hL (13–73)

Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
jump is expressed as

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 y1 2 y2 1

y1Fr2
1

2
 a1 2

y2
1

y2
2

b  (13–74)

The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 

x

EsEs1

Es2 � y2 �
V 2

2g

y

�gy1

hL

y1

y2

V2

V1

(1) (2)

1

2

�gy2

2

FIGURE 13–40
Schematic and flow depth-specific 
energy diagram for a hydraulic jump 
(specific energy decreases).
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Recall that flow in open channels is called rapidly varied flow (RVF) if 
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cause of rapidly varied flow. But some rapidly varied flows, such as flow 
through a sluice gate, occur even in regions where the channel cross section 
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involve significant multidimensional and transient effects, backflows, and 
flow separation (Fig. 13–39). Therefore, rapidly varied flows are usually 
studied experimentally or numerically. But despite these complexities, it is 
still possible to analyze some rapidly varied flows using the one-dimensional 
flow approximation with reasonable accuracy.
 The flow in steep channels may be supercritical, and the flow must change 
to subcritical if the channel can no longer sustain supercritical flow due to a 
reduced slope of the channel or increased frictional effects. Any such change 
from supercritical to subcritical flow occurs through a hydraulic jump. 
A hydraulic jump involves considerable mixing and agitation, and thus a 
significant amount of mechanical energy dissipation.
 Consider steady flow through a control volume that encloses the hydraulic 
jump, as shown in Fig. 13–39. To make a simple analysis possible, we make 
the following approximations:

1. The velocity is nearly constant across the channel at sections 1 and 2,
and therefore the momentum-flux correction factors are �1 � �2 � 1.

2. The pressure in the liquid varies hydrostatically, and we consider gage
pressure only since atmospheric pressure acts on all surfaces and its
effect cancels out.

3. The wall shear stress and its associated losses are negligible relative
to the losses that occur during the hydraulic jump due to the intense
agitation.

4. The channel is wide and horizontal.
5. There are no external or body forces other than gravity.

For a channel of width b, the conservation of mass relation m
.
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1 is 
expressed as �y1bV1 � �y2bV2 or

y1V1 5 y2V2 (13–67)

Noting that the only forces acting on the control volume in the horizontal 

x-direction are the pressure forces, the momentum equation aF
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FIGURE 13–38
Rapidly varied flow occurs when there 
is a sudden change in flow, such as an 

abrupt change in cross section.

FIGURE 13–39
When riding the rapids, a kayaker 

encounters several features of both 
gradually varied flow (GVF) and 

rapidly varied flow (RVF), with the 
latter being more exciting.

© Karl Weatherly/Getty RF
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圖 13-39　當通過急流時，一個獨木
舟划者同時遭遇到漸變流 (GVF) 與
急變流 (RVF) 的許多特徵，而後者
是比較刺激的。
© Karl Weatherly/Getty RF

圖 13-40　一個水躍的示意圖與流動
深度—比能量圖 (比能量減小)。
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
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1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to
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where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be
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Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
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The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 
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FIGURE 13–40
Schematic and flow depth-specific 
energy diagram for a hydraulic jump 
(specific energy decreases).
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用 V2 = (y1/y2)V1，從式 (13-67)，消去 V2 得到
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
A1 � y1b, A2 � y2b, and m

.
 � m

.
2 � m

.
1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to

y2
1 2 y2

2 5
2y1V1

g
 (V2 2 V1) (13–69)

Eliminating V2 by using V2 � (y1/y2)V1 from Eq. 13–67 gives

y2
1 2 y2

2 5
2y1V 1

2

gy2
 (y1 2 y2) (13–70)

Canceling the common factor y1 � y2 from both sides and rearranging give

ay2

y1
b

2

1
y2

y1
2 2Fr2

1 5 0 (13–71)

where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be

Depth ratio: 
y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B (13–72)

The energy equation (Eq. 13–30) for this horizontal flow section is

y1 1
V 

2
1

2g
5 y2 1

V 2
2

2g
1 hL (13–73)

Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
jump is expressed as

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 y1 2 y2 1

y1Fr2
1

2
 a1 2

y2
1

y2
2

b  (13–74)

The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 

x

EsEs1

Es2 � y2 �
V 2

2g

y

�gy1

hL

y1

y2

V2

V1

(1) (2)

1

2

�gy2

2

FIGURE 13–40
Schematic and flow depth-specific 
energy diagram for a hydraulic jump 
(specific energy decreases).

725-786_cengel_ch13.indd   758 7/2/13   6:59 PM

 (13-70)

從兩邊消去共同因子 (y1 −y2)，並重新整理得到
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
A1 � y1b, A2 � y2b, and m

.
 � m

.
2 � m

.
1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to

y2
1 2 y2

2 5
2y1V1

g
 (V2 2 V1) (13–69)

Eliminating V2 by using V2 � (y1/y2)V1 from Eq. 13–67 gives

y2
1 2 y2

2 5
2y1V 1

2

gy2
 (y1 2 y2) (13–70)

Canceling the common factor y1 � y2 from both sides and rearranging give

ay2

y1
b

2

1
y2

y1
2 2Fr2

1 5 0 (13–71)

where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be

Depth ratio: 
y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B (13–72)

The energy equation (Eq. 13–30) for this horizontal flow section is

y1 1
V 

2
1

2g
5 y2 1

V 2
2

2g
1 hL (13–73)

Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
jump is expressed as

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 y1 2 y2 1

y1Fr2
1

2
 a1 2

y2
1

y2
2

b  (13–74)

The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 
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 (13-71)

其中 
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
A1 � y1b, A2 � y2b, and m

.
 � m

.
2 � m

.
1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to

y2
1 2 y2

2 5
2y1V1

g
 (V2 2 V1) (13–69)

Eliminating V2 by using V2 � (y1/y2)V1 from Eq. 13–67 gives

y2
1 2 y2

2 5
2y1V 1

2

gy2
 (y1 2 y2) (13–70)

Canceling the common factor y1 � y2 from both sides and rearranging give

ay2

y1
b

2

1
y2

y1
2 2Fr2

1 5 0 (13–71)

where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be

Depth ratio: 
y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B (13–72)

The energy equation (Eq. 13–30) for this horizontal flow section is

y1 1
V 

2
1

2g
5 y2 1

V 2
2

2g
1 hL (13–73)

Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
jump is expressed as

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 y1 2 y2 1

y1Fr2
1

2
 a1 2

y2
1

y2
2

b  (13–74)

The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 
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FIGURE 13–40
Schematic and flow depth-specific 
energy diagram for a hydraulic jump 
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。這是一個 (y2/y1) 的二次方程式，它有兩個根－一正一負。

注意 y2/y1 不能是負的，因為 y2 與 y1 兩者都是正的量，深度比 y2/y1 被決定為

深度比： 
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
A1 � y1b, A2 � y2b, and m

.
 � m

.
2 � m

.
1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to

y2
1 2 y2

2 5
2y1V1

g
 (V2 2 V1) (13–69)

Eliminating V2 by using V2 � (y1/y2)V1 from Eq. 13–67 gives

y2
1 2 y2

2 5
2y1V 1

2

gy2
 (y1 2 y2) (13–70)

Canceling the common factor y1 � y2 from both sides and rearranging give

ay2

y1
b

2

1
y2

y1
2 2Fr2

1 5 0 (13–71)

where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be

Depth ratio: 
y2

y1
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The energy equation (Eq. 13–30) for this horizontal flow section is

y1 1
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2
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2g
5 y2 1

V 2
2

2g
1 hL (13–73)

Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
jump is expressed as

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 y1 2 y2 1

y1Fr2
1

2
 a1 2

y2
1

y2
2

b  (13–74)

The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 
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 (13-72)

對此水平流段能量方程式 (13-36) 是
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
A1 � y1b, A2 � y2b, and m

.
 � m

.
2 � m

.
1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to

y2
1 2 y2

2 5
2y1V1

g
 (V2 2 V1) (13–69)

Eliminating V2 by using V2 � (y1/y2)V1 from Eq. 13–67 gives

y2
1 2 y2

2 5
2y1V 1

2

gy2
 (y1 2 y2) (13–70)

Canceling the common factor y1 � y2 from both sides and rearranging give

ay2

y1
b

2

1
y2

y1
2 2Fr2

1 5 0 (13–71)

where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be

Depth ratio: 
y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B (13–72)

The energy equation (Eq. 13–30) for this horizontal flow section is

y1 1
V 

2
1

2g
5 y2 1

V 2
2

2g
1 hL (13–73)

Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
jump is expressed as

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 y1 2 y2 1

y1Fr2
1

2
 a1 2

y2
1

y2
2

b  (13–74)

The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 
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 (13-73)

注意 V2 = (y1/y2)V1 且 
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
A1 � y1b, A2 � y2b, and m

.
 � m

.
2 � m

.
1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to

y2
1 2 y2

2 5
2y1V1

g
 (V2 2 V1) (13–69)

Eliminating V2 by using V2 � (y1/y2)V1 from Eq. 13–67 gives

y2
1 2 y2

2 5
2y1V 1

2

gy2
 (y1 2 y2) (13–70)

Canceling the common factor y1 � y2 from both sides and rearranging give

ay2

y1
b

2

1
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y1
2 2Fr2

1 5 0 (13–71)

where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be

Depth ratio: 
y2
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The energy equation (Eq. 13–30) for this horizontal flow section is

y1 1
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2
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2
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Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
jump is expressed as

hL 5 y1 2 y2 1
V 2

1 2 V 2
2
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The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 

x

EsEs1

Es2 � y2 �
V 2

2g

y

�gy1

hL

y1

y2

V2

V1

(1) (2)

1

2

�gy2

2

FIGURE 13–40
Schematic and flow depth-specific 
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，與一個水躍有關的水頭損失被表示為
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where P1, avg � �gy1/2 and P2, avg � �gy2/2. For a channel width of b, we have 
A1 � y1b, A2 � y2b, and m

.
 � m

.
2 � m

.
1 � �A1V1 � �y1bV1. Substituting and 

simplifying, the momentum equation reduces to
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Eliminating V2 by using V2 � (y1/y2)V1 from Eq. 13–67 gives
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Canceling the common factor y1 � y2 from both sides and rearranging give

ay2
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2 2Fr2
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where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative since 
both y2 and y1 are positive quantities, the depth ratio y2/y1 is determined to be
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The energy equation (Eq. 13–30) for this horizontal flow section is
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Noting that V2 � (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated with a hydraulic 
jump is expressed as

hL 5 y1 2 y2 1
V 2

1 2 V 2
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The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 � 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 � 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize 
the mechanical energy of the water and thus its potential to cause dam-
age. This is done by first producing supercritical flow by converting high 
pressure to high linear velocity, and then allowing the flow to agitate and 
dissipate part of its kinetic energy as it breaks down and decelerates to a 
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 (13-74)

一個水躍的能量線示於圖 13-40 中。能量線在跨過水躍的下降代表與此水躍有

關的水頭損失。

當給定 Fr1 與 y1 時，下游的流動深度 y2 與水頭損失 hL 分別可用式 (13-72) 與 

(13-74) 計算出來。將 hL 相對於 Fr1 畫出來會揭露當 Fr1 <1 時 hL 變成負的，這是

不可能的 (這對應到一個負的熵產生，將會違反熱力學第二定律)。因此我們結論水

躍要能夠產生，上游的流動必須是超臨界的  (Fr1 >1)。換言之，次臨界流不能夠產

生水躍。這類似於氣體的流動要產生震波必須是超音速的 (馬赫數大於 1)。

水頭損失是經由內部流體摩擦所產生的機械能耗散的一個量度，且水頭損失通

常是不被喜歡的，因為它代表機械能的浪費。但是有時候水躍會與水壩的靜水池或

溢洪道一起設計，目的是儘可能地消耗機械能來最小化水的機械能以降低其造成損

害的能力。其作法是先轉換高壓力成為高速度來產生超臨界流，然後允許流體在其

崩潰與減速時攪動，並消耗其動能的一部分，因此水躍性質的一個量測是其能量耗
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表 13-4　水躍的分類

液體在水躍之前的比能量是 Es1 =y1 +V 2
1/2g。因此能量耗

散比 (圖 13-41) 被定義為

 能量耗散比
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subcritical velocity. Therefore, a measure of performance of a hydraulic 
jump is its fraction of energy dissipation.
 The specific energy of the liquid before the hydraulic jump is Es1 � 
y1 1 V 1

2/2g. Then the energy dissipation ratio (Fig. 13–41) is defined as

Energy dissipation ratio 5
hL

Es1

5
hL

y1 1 V 2
1/2g

5
hL

y1(1 1 Fr2
1/2)

(13–75)

The fraction of energy dissipation ranges from just a few percent for weak 
hydraulic jumps (Fr1 � 2) to 85 percent for strong jumps (Fr1 � 9).
 Unlike a normal shock in gas flow, which occurs at a cross section and 
thus has negligible thickness, the hydraulic jump occurs over a considerable 
channel length. In the Froude number range of practical interest, the length 
of the hydraulic jump is observed to be 4 to 7 times the downstream flow 
depth y2.
 Experimental studies indicate that hydraulic jumps can be classified into 
five categories as shown in Table 13–4, depending primarily on the value of 
the upstream Froude number Fr1. For Fr1 somewhat higher than 1, the liquid 
rises slightly during the hydraulic jump, producing standing waves. At larger 
Fr1, highly damaging oscillating waves occur. The desirable range of Froude 
numbers is 4.5 � Fr1 � 9, which produces stable and well-balanced steady 
waves with high levels of energy dissipation within the jump. Hydraulic 
jumps with Fr1 � 9 produce very rough waves. The depth ratio y2/y1 ranges 
from slightly over 1 for undular jumps that are mild and involve small rises 
in surface level to over 12 for strong jumps that are rough and involve high 
rises in surface level.
 In this section we limit our consideration to wide horizontal rectangular 
channels so that edge and gravity effects are negligible. Hydraulic jumps in 
nonrectangular and sloped channels behave similarly, but the flow charac-
teristics and thus the relations for depth ratio, head loss, jump length, and 
dissipation ratio are different.

EXAMPLE 13–8    Hydraulic Jump

Water discharging into a 10-m-wide rectangular horizontal channel from a 
sluice gate is observed to have undergone a hydraulic jump. The flow depth 
and velocity before the jump are 0.8 m and 7 m/s, respectively. Determine 
(a) the flow depth and the Froude number after the jump, (b) the head loss 
and the energy dissipation ratio, and (c) the wasted power production poten-
tial due to the hydraulic jump (Fig. 13–42).

SOLUTION  Water at a specified depth and velocity undergoes a hydraulic 
jump in a horizontal channel. The depth and Froude number after the jump, 
the head loss and the dissipation ratio, and the wasted power potential are 
to be determined.
Assumptions  1 The flow is steady or quasi-steady. 2 The channel is suffi-
ciently wide so that the end effects are negligible.
Properties  The density of water is 1000 kg/m3.

hL

y1

y2
V2

V1

V 2

2g

V 2

2g
2

1

1
� �

hL

Es1

hL

y1 � V 2/2g

(1) (2)

FIGURE 13–41
The energy dissipation ratio represents 

the fraction of mechanical energy 
dissipated during a hydraulic jump.

hL

V1  7 m/s V2

y1  0.8 m
y2

Energy line

(1) (2)

FIGURE 13–42
Schematic for Example 13–8.
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 (13-75)

能量耗散比的範圍從弱水躍 (Fr1 <2) 的幾個百分比到強水躍 

(Fr1 >9) 的 85% 左右。

不像氣體流動的正震波，其發生是在一個截面上並具有可

忽略的厚度，但水躍通常發生在一段可觀的渠道長度上。在實

際關注的福勞數範圍，被觀察到的水躍長度約為下游流動深度 

y2 的 4 到 7 倍。

實驗研究指出水躍可以分成五類如表 13-4 所示，主要相依於上游福勞數 Fr1。

若 Fr1 稍大於 1，液體在水躍時稍微上升，製造出駐波。在 Fr1 更大一點時，產生

出高度破壞性的振盪波。最希望的福勞數範圍是 4.5 < Fr1 < 9，會產生穩定且高度

圖 13-41　能量耗散比代表在一個水
躍中機械能耗散的比例。
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subcritical velocity. Therefore, a measure of performance of a hydraulic 
jump is its fraction of energy dissipation.
 The specific energy of the liquid before the hydraulic jump is Es1 � 
y1 1 V 1

2/2g. Then the energy dissipation ratio (Fig. 13–41) is defined as
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The fraction of energy dissipation ranges from just a few percent for weak 
hydraulic jumps (Fr1 � 2) to 85 percent for strong jumps (Fr1 � 9).
 Unlike a normal shock in gas flow, which occurs at a cross section and 
thus has negligible thickness, the hydraulic jump occurs over a considerable 
channel length. In the Froude number range of practical interest, the length 
of the hydraulic jump is observed to be 4 to 7 times the downstream flow 
depth y2.
 Experimental studies indicate that hydraulic jumps can be classified into 
five categories as shown in Table 13–4, depending primarily on the value of 
the upstream Froude number Fr1. For Fr1 somewhat higher than 1, the liquid 
rises slightly during the hydraulic jump, producing standing waves. At larger 
Fr1, highly damaging oscillating waves occur. The desirable range of Froude 
numbers is 4.5 � Fr1 � 9, which produces stable and well-balanced steady 
waves with high levels of energy dissipation within the jump. Hydraulic 
jumps with Fr1 � 9 produce very rough waves. The depth ratio y2/y1 ranges 
from slightly over 1 for undular jumps that are mild and involve small rises 
in surface level to over 12 for strong jumps that are rough and involve high 
rises in surface level.
 In this section we limit our consideration to wide horizontal rectangular 
channels so that edge and gravity effects are negligible. Hydraulic jumps in 
nonrectangular and sloped channels behave similarly, but the flow charac-
teristics and thus the relations for depth ratio, head loss, jump length, and 
dissipation ratio are different.

EXAMPLE 13–8    Hydraulic Jump

Water discharging into a 10-m-wide rectangular horizontal channel from a 
sluice gate is observed to have undergone a hydraulic jump. The flow depth 
and velocity before the jump are 0.8 m and 7 m/s, respectively. Determine 
(a) the flow depth and the Froude number after the jump, (b) the head loss 
and the energy dissipation ratio, and (c) the wasted power production poten-
tial due to the hydraulic jump (Fig. 13–42).

SOLUTION  Water at a specified depth and velocity undergoes a hydraulic 
jump in a horizontal channel. The depth and Froude number after the jump, 
the head loss and the dissipation ratio, and the wasted power potential are 
to be determined.
Assumptions  1 The flow is steady or quasi-steady. 2 The channel is suffi-
ciently wide so that the end effects are negligible.
Properties  The density of water is 1000 kg/m3.
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能量線

能量耗散比

上游 Fr1 深度比 y2/y1 能量耗散比 描述 表面形狀

<1 1 0 水躍不可能。違反熱力學第二
定律。

1-1.7 1-2 <5% 波狀水躍  (或駐波)。表面高
度微升，低能量耗散。接近 
F r =1.7  時，發展出表面滾
動。
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Analysis  (a) The Froude number before the hydraulic jump is

Fr1 5
V1

"gy1

5
7 m/s

"(9.81 m/s2)(0.8 m)
5 2.50

which is greater than 1. Therefore, the flow is indeed supercritical before the 
jump. The flow depth, velocity, and Froude number after the jump are

 y2 5 0.5y1A211"11 8Fr2
1 B 5 0.5(0.8 m) A211"11 83 2.502 B5 2.46 m

 V2 5
y1

y2
V1 5

0.8 m

2.46 m
 (7 m/s) 5 2.28 m/s

 Fr2 5
V2

"gy2

5
2.28 m/s

"(9.81 m/s2)(2.46 m)
5 0.464

TABLE 13–4

Classification of hydraulic jumps

Source: U.S. Bureau of Reclamation (1955).

Depth Fraction of 
 Upstream Ratio Energy Surface
 Fr1 y2/y1 Dissipation Description Profile

 �1 1 0  Impossible jump. Would violate the 
second law of thermodynamics.

 1–1.7 1–2 �5%  Undular jump (or standing wave). 
Small rise in surface level. Low energy 
dissipation. Surface rollers develop 
near Fr � 1.7.

 1.7–2.5 2–3.1  5–15%  Weak jump. Surface rising smoothly, 
with small rollers. Low energy 
dissipation.

 2.5–4.5 3.1–5.9 15–45%  Oscillating jump. Pulsations caused by 
jets entering at the bottom generate 
large waves that can travel for miles 
and damage earth banks. Should be 
avoided in the design of stilling basins.

 4.5–9 5.9–12 45–70%  Steady jump. Stable, well-balanced, 
and insensitive to downstream 
conditions. Intense eddy motion and 
high level of energy dissipation within 
the jump. Recommended range 
for design.

 �9 �12 70–85%  Strong jump. Rough and intermittent. 
Very effective energy dissipation, but 
may be uneconomical compared to 
other designs because of the larger water 
heights involved.
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1.7-2.5 2-3.1 5-15% 弱水躍。表面平滑地上升，帶
有滾動。低能量耗散。
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Analysis  (a) The Froude number before the hydraulic jump is
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7 m/s
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which is greater than 1. Therefore, the flow is indeed supercritical before the 
jump. The flow depth, velocity, and Froude number after the jump are

 y2 5 0.5y1A211"11 8Fr2
1 B 5 0.5(0.8 m) A211"11 83 2.502 B5 2.46 m

 V2 5
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 (7 m/s) 5 2.28 m/s
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2.28 m/s

"(9.81 m/s2)(2.46 m)
5 0.464

TABLE 13–4

Classification of hydraulic jumps

Source: U.S. Bureau of Reclamation (1955).

Depth Fraction of 
 Upstream Ratio Energy Surface
 Fr1 y2/y1 Dissipation Description Profile

 �1 1 0  Impossible jump. Would violate the 
second law of thermodynamics.

 1–1.7 1–2 �5%  Undular jump (or standing wave). 
Small rise in surface level. Low energy 
dissipation. Surface rollers develop 
near Fr � 1.7.

 1.7–2.5 2–3.1  5–15%  Weak jump. Surface rising smoothly, 
with small rollers. Low energy 
dissipation.

 2.5–4.5 3.1–5.9 15–45%  Oscillating jump. Pulsations caused by 
jets entering at the bottom generate 
large waves that can travel for miles 
and damage earth banks. Should be 
avoided in the design of stilling basins.

 4.5–9 5.9–12 45–70%  Steady jump. Stable, well-balanced, 
and insensitive to downstream 
conditions. Intense eddy motion and 
high level of energy dissipation within 
the jump. Recommended range 
for design.

 �9 �12 70–85%  Strong jump. Rough and intermittent. 
Very effective energy dissipation, but 
may be uneconomical compared to 
other designs because of the larger water 
heights involved.
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2.5-4.5 3.1-5.9 14-45% 振盪水躍。振盪是由底部進入
的噴束產生大型波浪，可以傳
播數英哩並破壞土堤。設計靜
水池時必須避免。
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which is greater than 1. Therefore, the flow is indeed supercritical before the 
jump. The flow depth, velocity, and Froude number after the jump are
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 Upstream Ratio Energy Surface
 Fr1 y2/y1 Dissipation Description Profile

 �1 1 0  Impossible jump. Would violate the 
second law of thermodynamics.

 1–1.7 1–2 �5%  Undular jump (or standing wave). 
Small rise in surface level. Low energy 
dissipation. Surface rollers develop 
near Fr � 1.7.
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jets entering at the bottom generate 
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and damage earth banks. Should be 
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the jump. Recommended range 
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other designs because of the larger water 
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4.5-9 5.9-12 45-70% 穩定水躍。穩定、高度平
衡，並對下游條件不敏感。密
集的旋渦運動與在水躍內有高
水平的能量耗散。設計所推薦
的範圍。
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which is greater than 1. Therefore, the flow is indeed supercritical before the 
jump. The flow depth, velocity, and Froude number after the jump are
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> 9 >12 70-85% 強水躍。險惡並斷斷續續。能
量耗散很有效，但與其它設計
比較，可能是不經濟的，因水
波高度相當高。
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來源：美國填海工程局 (1955)。
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 例題 13-8　　水躍

水從一個水閘門排入一個 10 m 寬的矩形水平渠道中，並被觀察到

經歷一個水躍。水躍之前的流動深度與速度分別是 0.8 m 與 7 m/

s。

試求 (a) 水躍之後的流動深度與福勞數，(b) 水頭損失與能量耗散

比，與 (c) 由於水躍所浪費的功率製造能力 (圖 13-42)。

解答：在水平渠道中的水在指定深度與速度下經歷了一個水躍。

要決定在水躍之後的深度與福勞數、水頭損失與耗散比與浪費的

功率能力。

假設：1. 流動是穩定或近似穩定的。2. 渠道足夠寬，故邊際效應可以忽略。

性質：水的密度是 1000 kg/m3。

解析：(a) 水躍之前的福勞數是
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Analysis  (a) The Froude number before the hydraulic jump is

Fr1 5
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"gy1
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7 m/s
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5 2.50

which is greater than 1. Therefore, the flow is indeed supercritical before the 
jump. The flow depth, velocity, and Froude number after the jump are

 y2 5 0.5y1A211"11 8Fr2
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TABLE 13–4

Classification of hydraulic jumps

Source: U.S. Bureau of Reclamation (1955).

Depth Fraction of 
 Upstream Ratio Energy Surface
 Fr1 y2/y1 Dissipation Description Profile

 �1 1 0  Impossible jump. Would violate the 
second law of thermodynamics.

 1–1.7 1–2 �5%  Undular jump (or standing wave). 
Small rise in surface level. Low energy 
dissipation. Surface rollers develop 
near Fr � 1.7.

 1.7–2.5 2–3.1  5–15%  Weak jump. Surface rising smoothly, 
with small rollers. Low energy 
dissipation.

 2.5–4.5 3.1–5.9 15–45%  Oscillating jump. Pulsations caused by 
jets entering at the bottom generate 
large waves that can travel for miles 
and damage earth banks. Should be 
avoided in the design of stilling basins.

 4.5–9 5.9–12 45–70%  Steady jump. Stable, well-balanced, 
and insensitive to downstream 
conditions. Intense eddy motion and 
high level of energy dissipation within 
the jump. Recommended range 
for design.

 �9 �12 70–85%  Strong jump. Rough and intermittent. 
Very effective energy dissipation, but 
may be uneconomical compared to 
other designs because of the larger water 
heights involved.
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其值大於 1。因此水躍前流動的確是超臨界的。水躍之後的流動深度、速度與福勞數為
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Depth Fraction of 
 Upstream Ratio Energy Surface
 Fr1 y2/y1 Dissipation Description Profile

 �1 1 0  Impossible jump. Would violate the 
second law of thermodynamics.

 1–1.7 1–2 �5%  Undular jump (or standing wave). 
Small rise in surface level. Low energy 
dissipation. Surface rollers develop 
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jets entering at the bottom generate 
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the jump. Recommended range 
for design.
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Very effective energy dissipation, but 
may be uneconomical compared to 
other designs because of the larger water 
heights involved.
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注意在水躍之後流動深度變 3 倍，而福勞數減小成約 1/5 倍。

(b) 水頭損失從能量方程式決定為
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Note that the flow depth triples and the Froude number reduces to about 
one-fifth after the jump.

(b) The head loss is determined from the energy equation to be

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 (0.8 m) 2 (2.46 m) 1

(7 m/s)2 2 (2.28 m/s)2

2(9.81 m/s2)

 5 0.572 m 

The specific energy of water before the jump and the dissipation ratio are

Es1 5 y1 1
V 2

1

2g
5 (0.8 m) 1

(7 m/s)2

2(9.81 m/s2)
5 3.30 m

5
hL

Es1

5
0.572 m

3.30 m
5 0.173

Therefore, 17.3 percent of the available head (or mechanical energy) of the 
liquid is wasted (converted to thermal energy) as a result of frictional effects 
during this hydraulic jump.

(c) The mass flow rate of water is

m
#
5 rV

#
5 rby1V1 5 (1000 kg/m3)(0.8 m)(10 m)(7 m/s) 5 56,000 kg/s

Then the power dissipation corresponding to a head loss of 0.572 m becomes

E
#
dissipated 5 m# ghL 5 (56,000 kg/s)(9.81 m/s2)(0.572 m)a 1 N

1 kg·m/s2b

5 314,000 N·m/s 5 314 kW

Discussion  The results show that the hydraulic jump is a highly dissipative 
process, wasting 314 kW of power production potential in this case. That is, 
if the water were routed to a hydraulic turbine instead of being released from 
the sluice gate, up to 314 kW of power could be generated. But this poten-
tial is converted to useless thermal energy instead of useful power, causing a 
water temperature rise of

DT 5
E
#
dissipated

m# cp

5
314 kJ/s

(56,000 kg/s)(4.18 kJ/kg·8C)
5 0.00138C

Note that a 314-kW resistance heater would cause the same temperature 
rise for water flowing at a rate of 56,000 kg/s.

13–9 ■  FLOW CONTROL AND MEASUREMENT
The flow rate in pipes and ducts is controlled by various kinds of valves. 
Liquid flow in open channels, however, is not confined, and thus the flow 
rate is controlled by partially blocking the channel. This is done by either 
allowing the liquid to flow over the obstruction or under it. An obstruction 
that allows the liquid to flow over it is called a weir (Fig. 13–43), and an 
obstruction with an adjustable opening at the bottom that allows the liquid 
to flow underneath it is called an underflow gate. Such devices can be used 
to control the flow rate through the channel as well as to measure it.

FIGURE 13–43
A weir is a flow control device 
in which the water flows over 

the obstruction.
(a) © Design Pics RF/The Irish Image 

Collection/Getty RF; (b) Photo courtesy 
of Bryan Lewis.

(a)

(b)
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水躍之前水的比能量與耗散比為

圖 13-42　例題 13-8 的示意圖。
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subcritical velocity. Therefore, a measure of performance of a hydraulic 
jump is its fraction of energy dissipation.
 The specific energy of the liquid before the hydraulic jump is Es1 � 
y1 1 V 1

2/2g. Then the energy dissipation ratio (Fig. 13–41) is defined as

Energy dissipation ratio 5
hL

Es1

5
hL

y1 1 V 2
1/2g

5
hL

y1(1 1 Fr2
1/2)

(13–75)

The fraction of energy dissipation ranges from just a few percent for weak 
hydraulic jumps (Fr1 � 2) to 85 percent for strong jumps (Fr1 � 9).
 Unlike a normal shock in gas flow, which occurs at a cross section and 
thus has negligible thickness, the hydraulic jump occurs over a considerable 
channel length. In the Froude number range of practical interest, the length 
of the hydraulic jump is observed to be 4 to 7 times the downstream flow 
depth y2.
 Experimental studies indicate that hydraulic jumps can be classified into 
five categories as shown in Table 13–4, depending primarily on the value of 
the upstream Froude number Fr1. For Fr1 somewhat higher than 1, the liquid 
rises slightly during the hydraulic jump, producing standing waves. At larger 
Fr1, highly damaging oscillating waves occur. The desirable range of Froude 
numbers is 4.5 � Fr1 � 9, which produces stable and well-balanced steady 
waves with high levels of energy dissipation within the jump. Hydraulic 
jumps with Fr1 � 9 produce very rough waves. The depth ratio y2/y1 ranges 
from slightly over 1 for undular jumps that are mild and involve small rises 
in surface level to over 12 for strong jumps that are rough and involve high 
rises in surface level.
 In this section we limit our consideration to wide horizontal rectangular 
channels so that edge and gravity effects are negligible. Hydraulic jumps in 
nonrectangular and sloped channels behave similarly, but the flow charac-
teristics and thus the relations for depth ratio, head loss, jump length, and 
dissipation ratio are different.

EXAMPLE 13–8    Hydraulic Jump

Water discharging into a 10-m-wide rectangular horizontal channel from a 
sluice gate is observed to have undergone a hydraulic jump. The flow depth 
and velocity before the jump are 0.8 m and 7 m/s, respectively. Determine 
(a) the flow depth and the Froude number after the jump, (b) the head loss 
and the energy dissipation ratio, and (c) the wasted power production poten-
tial due to the hydraulic jump (Fig. 13–42).

SOLUTION  Water at a specified depth and velocity undergoes a hydraulic 
jump in a horizontal channel. The depth and Froude number after the jump, 
the head loss and the dissipation ratio, and the wasted power potential are 
to be determined.
Assumptions  1 The flow is steady or quasi-steady. 2 The channel is suffi-
ciently wide so that the end effects are negligible.
Properties  The density of water is 1000 kg/m3.

hL

y1

y2
V2

V1

V 2

2g

V 2

2g
2

1

1
� �

hL

Es1

hL

y1 � V 2/2g

(1) (2)

FIGURE 13–41
The energy dissipation ratio represents 

the fraction of mechanical energy 
dissipated during a hydraulic jump.

hL

V1  7 m/s V2

y1  0.8 m
y2

Energy line

(1) (2)

FIGURE 13–42
Schematic for Example 13–8.
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能量線

平衡的穩定波，在水躍內具有高水平的能量耗散。大於 Fr1 >9 的水躍產生險惡的

波。深度比 y2/y1 稍微大於 1 時產生溫和的波狀水躍 (undular jump) ，且其表面高度

稍微上升，深度比大於 12 時產生險惡的強力水躍，其水位有高程度的上升。

在本節中，我們的考慮只針對寬的水平矩形渠道，其邊際與重力效應可以忽

略。非矩形及傾斜渠道的水躍行為類似，但是流動特性，也就是深度比、水頭損

失、水躍長度與耗散比是不同的。
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Note that the flow depth triples and the Froude number reduces to about 
one-fifth after the jump.

(b) The head loss is determined from the energy equation to be

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 (0.8 m) 2 (2.46 m) 1

(7 m/s)2 2 (2.28 m/s)2

2(9.81 m/s2)

 5 0.572 m 

The specific energy of water before the jump and the dissipation ratio are

Es1 5 y1 1
V 2

1

2g
5 (0.8 m) 1

(7 m/s)2

2(9.81 m/s2)
5 3.30 m

5
hL

Es1

5
0.572 m

3.30 m
5 0.173

Therefore, 17.3 percent of the available head (or mechanical energy) of the 
liquid is wasted (converted to thermal energy) as a result of frictional effects 
during this hydraulic jump.

(c) The mass flow rate of water is

m
#
5 rV

#
5 rby1V1 5 (1000 kg/m3)(0.8 m)(10 m)(7 m/s) 5 56,000 kg/s

Then the power dissipation corresponding to a head loss of 0.572 m becomes

E
#
dissipated 5 m# ghL 5 (56,000 kg/s)(9.81 m/s2)(0.572 m)a 1 N

1 kg·m/s2b

5 314,000 N·m/s 5 314 kW

Discussion  The results show that the hydraulic jump is a highly dissipative 
process, wasting 314 kW of power production potential in this case. That is, 
if the water were routed to a hydraulic turbine instead of being released from 
the sluice gate, up to 314 kW of power could be generated. But this poten-
tial is converted to useless thermal energy instead of useful power, causing a 
water temperature rise of

DT 5
E
#
dissipated

m# cp

5
314 kJ/s

(56,000 kg/s)(4.18 kJ/kg·8C)
5 0.00138C

Note that a 314-kW resistance heater would cause the same temperature 
rise for water flowing at a rate of 56,000 kg/s.

13–9 ■  FLOW CONTROL AND MEASUREMENT
The flow rate in pipes and ducts is controlled by various kinds of valves. 
Liquid flow in open channels, however, is not confined, and thus the flow 
rate is controlled by partially blocking the channel. This is done by either 
allowing the liquid to flow over the obstruction or under it. An obstruction 
that allows the liquid to flow over it is called a weir (Fig. 13–43), and an 
obstruction with an adjustable opening at the bottom that allows the liquid 
to flow underneath it is called an underflow gate. Such devices can be used 
to control the flow rate through the channel as well as to measure it.

FIGURE 13–43
A weir is a flow control device 
in which the water flows over 

the obstruction.
(a) © Design Pics RF/The Irish Image 

Collection/Getty RF; (b) Photo courtesy 
of Bryan Lewis.

(a)

(b)
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耗散比

因此，液體可用的水頭 (或機械能) 的 17.3% 被浪費了 (轉變成熱能)，原因是水躍產生的摩擦效應。

(c) 水的質量流率是
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Note that the flow depth triples and the Froude number reduces to about 
one-fifth after the jump.

(b) The head loss is determined from the energy equation to be

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 (0.8 m) 2 (2.46 m) 1

(7 m/s)2 2 (2.28 m/s)2

2(9.81 m/s2)

 5 0.572 m 

The specific energy of water before the jump and the dissipation ratio are

Es1 5 y1 1
V 2

1

2g
5 (0.8 m) 1

(7 m/s)2

2(9.81 m/s2)
5 3.30 m

5
hL

Es1

5
0.572 m

3.30 m
5 0.173

Therefore, 17.3 percent of the available head (or mechanical energy) of the 
liquid is wasted (converted to thermal energy) as a result of frictional effects 
during this hydraulic jump.

(c) The mass flow rate of water is

m
#
5 rV

#
5 rby1V1 5 (1000 kg/m3)(0.8 m)(10 m)(7 m/s) 5 56,000 kg/s

Then the power dissipation corresponding to a head loss of 0.572 m becomes

E
#
dissipated 5 m# ghL 5 (56,000 kg/s)(9.81 m/s2)(0.572 m)a 1 N

1 kg·m/s2b

5 314,000 N·m/s 5 314 kW

Discussion  The results show that the hydraulic jump is a highly dissipative 
process, wasting 314 kW of power production potential in this case. That is, 
if the water were routed to a hydraulic turbine instead of being released from 
the sluice gate, up to 314 kW of power could be generated. But this poten-
tial is converted to useless thermal energy instead of useful power, causing a 
water temperature rise of

DT 5
E
#
dissipated

m# cp

5
314 kJ/s

(56,000 kg/s)(4.18 kJ/kg·8C)
5 0.00138C

Note that a 314-kW resistance heater would cause the same temperature 
rise for water flowing at a rate of 56,000 kg/s.

13–9 ■  FLOW CONTROL AND MEASUREMENT
The flow rate in pipes and ducts is controlled by various kinds of valves. 
Liquid flow in open channels, however, is not confined, and thus the flow 
rate is controlled by partially blocking the channel. This is done by either 
allowing the liquid to flow over the obstruction or under it. An obstruction 
that allows the liquid to flow over it is called a weir (Fig. 13–43), and an 
obstruction with an adjustable opening at the bottom that allows the liquid 
to flow underneath it is called an underflow gate. Such devices can be used 
to control the flow rate through the channel as well as to measure it.

FIGURE 13–43
A weir is a flow control device 
in which the water flows over 

the obstruction.
(a) © Design Pics RF/The Irish Image 

Collection/Getty RF; (b) Photo courtesy 
of Bryan Lewis.

(a)

(b)
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對應一個 0.572 m 的水頭損失的功率耗散大小為
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Note that the flow depth triples and the Froude number reduces to about 
one-fifth after the jump.

(b) The head loss is determined from the energy equation to be

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 (0.8 m) 2 (2.46 m) 1

(7 m/s)2 2 (2.28 m/s)2

2(9.81 m/s2)

 5 0.572 m 

The specific energy of water before the jump and the dissipation ratio are

Es1 5 y1 1
V 2

1

2g
5 (0.8 m) 1

(7 m/s)2

2(9.81 m/s2)
5 3.30 m

5
hL

Es1

5
0.572 m

3.30 m
5 0.173

Therefore, 17.3 percent of the available head (or mechanical energy) of the 
liquid is wasted (converted to thermal energy) as a result of frictional effects 
during this hydraulic jump.

(c) The mass flow rate of water is

m
#
5 rV

#
5 rby1V1 5 (1000 kg/m3)(0.8 m)(10 m)(7 m/s) 5 56,000 kg/s

Then the power dissipation corresponding to a head loss of 0.572 m becomes

E
#
dissipated 5 m# ghL 5 (56,000 kg/s)(9.81 m/s2)(0.572 m)a 1 N

1 kg·m/s2b

5 314,000 N·m/s 5 314 kW

Discussion  The results show that the hydraulic jump is a highly dissipative 
process, wasting 314 kW of power production potential in this case. That is, 
if the water were routed to a hydraulic turbine instead of being released from 
the sluice gate, up to 314 kW of power could be generated. But this poten-
tial is converted to useless thermal energy instead of useful power, causing a 
water temperature rise of

DT 5
E
#
dissipated

m# cp

5
314 kJ/s

(56,000 kg/s)(4.18 kJ/kg·8C)
5 0.00138C

Note that a 314-kW resistance heater would cause the same temperature 
rise for water flowing at a rate of 56,000 kg/s.

13–9 ■  FLOW CONTROL AND MEASUREMENT
The flow rate in pipes and ducts is controlled by various kinds of valves. 
Liquid flow in open channels, however, is not confined, and thus the flow 
rate is controlled by partially blocking the channel. This is done by either 
allowing the liquid to flow over the obstruction or under it. An obstruction 
that allows the liquid to flow over it is called a weir (Fig. 13–43), and an 
obstruction with an adjustable opening at the bottom that allows the liquid 
to flow underneath it is called an underflow gate. Such devices can be used 
to control the flow rate through the channel as well as to measure it.

FIGURE 13–43
A weir is a flow control device 
in which the water flows over 

the obstruction.
(a) © Design Pics RF/The Irish Image 

Collection/Getty RF; (b) Photo courtesy 
of Bryan Lewis.

(a)

(b)
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討論：結果顯示水躍是高度的耗散過程，此例中浪費了 314 kW 的功率產生能力。因此，如果水被

分流到一個水力輪機來代替從水閘門排放，至多可以產生 314 kW 的功率。但是這個潛力被轉換成

無用的熱能，而不是有用的功率，造成水溫上升，
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Note that the flow depth triples and the Froude number reduces to about 
one-fifth after the jump.

(b) The head loss is determined from the energy equation to be

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 (0.8 m) 2 (2.46 m) 1

(7 m/s)2 2 (2.28 m/s)2

2(9.81 m/s2)

 5 0.572 m 

The specific energy of water before the jump and the dissipation ratio are

Es1 5 y1 1
V 2

1
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5 (0.8 m) 1

(7 m/s)2

2(9.81 m/s2)
5 3.30 m

5
hL

Es1

5
0.572 m

3.30 m
5 0.173

Therefore, 17.3 percent of the available head (or mechanical energy) of the 
liquid is wasted (converted to thermal energy) as a result of frictional effects 
during this hydraulic jump.

(c) The mass flow rate of water is

m
#
5 rV

#
5 rby1V1 5 (1000 kg/m3)(0.8 m)(10 m)(7 m/s) 5 56,000 kg/s

Then the power dissipation corresponding to a head loss of 0.572 m becomes

E
#
dissipated 5 m# ghL 5 (56,000 kg/s)(9.81 m/s2)(0.572 m)a 1 N

1 kg·m/s2b

5 314,000 N·m/s 5 314 kW

Discussion  The results show that the hydraulic jump is a highly dissipative 
process, wasting 314 kW of power production potential in this case. That is, 
if the water were routed to a hydraulic turbine instead of being released from 
the sluice gate, up to 314 kW of power could be generated. But this poten-
tial is converted to useless thermal energy instead of useful power, causing a 
water temperature rise of

DT 5
E
#
dissipated

m# cp

5
314 kJ/s

(56,000 kg/s)(4.18 kJ/kg·8C)
5 0.00138C

Note that a 314-kW resistance heater would cause the same temperature 
rise for water flowing at a rate of 56,000 kg/s.

13–9 ■  FLOW CONTROL AND MEASUREMENT
The flow rate in pipes and ducts is controlled by various kinds of valves. 
Liquid flow in open channels, however, is not confined, and thus the flow 
rate is controlled by partially blocking the channel. This is done by either 
allowing the liquid to flow over the obstruction or under it. An obstruction 
that allows the liquid to flow over it is called a weir (Fig. 13–43), and an 
obstruction with an adjustable opening at the bottom that allows the liquid 
to flow underneath it is called an underflow gate. Such devices can be used 
to control the flow rate through the channel as well as to measure it.

FIGURE 13–43
A weir is a flow control device 
in which the water flows over 

the obstruction.
(a) © Design Pics RF/The Irish Image 

Collection/Getty RF; (b) Photo courtesy 
of Bryan Lewis.

(a)

(b)
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注意一個 314 kW 的電阻式加熱器會對 56,000 kg/s 的水流率造成相同的溫升。

13-9　流動控制與量測

管道及流道中的流率是用各種閥來控制的。然而，在明渠中的液體流動並沒受

到侷限，因此流動是用部分阻塞渠道來控制的。其作法是允許流體從障礙物之上或

之下流過。若障礙物允許流體從其上面流過，稱為堰 (weir) (圖 13-43)。若障礙物

底部有可調整的門口並允許液體流過其底部，稱為底流閘門 (underflow gate)。這些

裝置可以用來控制通過渠道的流率並加以量測。

底流閘門

有許多種底流閘門可以用來控制流率，每種都有一些優點與缺點。底流閘門位

於牆壁、壩或明渠的底部。兩種常用的這種閘門是水閘門 (sluice gate) 與滾筒式閘

門 (drum gate)，如圖 13-44 所示。水閘門一般是垂直的，並使用一個平的表面，而

滾筒式閘門則有圓形的截面，並具有流線型的表面。
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當閘門部分打開時，上游液體在朝向閘門接近時加速，在

閘門達到臨界速度，並在通過閘門以後繼續加速至超臨界流的

速度。因此，底流閘門就類似於氣體動力學中的收縮 –擴張噴

嘴。從一個底流閘門的排水，如果液體噴束直接從閘門流出到

大氣中則稱為自由流出 (free outflow) (圖 13-44a)，而若是排出

的液體逆流回來並淹沒了液體噴束，則稱為沉沒出口 (drowned 

or submerged outflow) (圖 13-44b)。在沉沒流中，流體噴束經歷

一個水躍，因此下游的流動是次臨界的。同時沉沒出口包括高

水平的紊流與逆流，因此有很大的水頭損失 hL。

對於通過底流閘門，具有自由或沉沒出口的流動，其流動

深度–比能量的圖示於圖 13-45。注意對於摩擦效應可以忽略的

理想閘門，其比能量維持為常數 (從點 1 到點 2a)，但對實際的

閘門則減小。下游對於一個自由出口是超臨界的 (點 2b)，但對

一個沉沒出口則是次臨界的 (點 2c)，因為沉沒出口會經過一個

水躍變成次臨界流，這將包含可觀的混合與能量耗散。

將摩擦效應近似成可忽略的並假設上游 (或貯水槽) 速度很

小，使用伯努利方程式可以證明自由噴束 (free jet) 的排出速度

是 (細節參考第 5 章)
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Underflow Gates
There are numerous types of underflow gates to control the flow rate, each 
with certain advantages and disadvantages. Underflow gates are located at 
the bottom of a wall, dam, or an open channel. Two common types of such 
gates, the sluice gate and the drum gate, are shown in Fig. 13–44. A sluice 
gate is typically vertical and has a plane surface, whereas a drum gate has a 
circular cross section with a streamlined surface.
 When the gate is partially opened, the upstream liquid accelerates as it 
approaches the gate, reaches critical speed at the gate, and accelerates further 
to supercritical speeds past the gate. Therefore, an underflow gate is analo-
gous to a converging–diverging nozzle in gas dynamics. The discharge from 
an underflow gate is called a free outflow if the liquid jet streaming out of the 
gate is open to the atmosphere (Fig. 13–44a), and it is called a drowned (or 
submerged ) outflow if the discharged liquid flashes back and submerges the 
jet (Fig. 13–44b). In drowned flow, the liquid jet undergoes a hydraulic jump, 
and thus the downstream flow is subcritical. Also, drowned outflow in volves 
a high level of turbulence and backflow, and thus a large head loss hL.
 The flow depth-specific energy diagram for flow through underflow gates with 
free and drowned outflow is given in Fig. 13–45. Note that the specific energy 
remains constant for idealized gates with negligible frictional effects (from 
point 1 to point 2a), but decreases for actual gates. The downstream is supercriti-
cal for a gate with free outflow (point 2b), but subcritical for one with drowned 
outflow (point 2c) since a drowned outflow also involves a hydraulic jump to
subcritical flow, which involves considerable mixing and energy dissipation.
 Approximating the frictional effects as negligible and the upstream (or 
reservoir) velocity to be low, it can be shown by using the Bernoulli equa-
tion that the discharge velocity of a free jet is (see Chap. 5 for details)

V 5 "2gy1 (13–76)

The frictional effects can be accounted for by modifying this relation with 
a discharge coefficient Cd. Then the discharge velocity at the gate and the 
flow rate become

V 5 Cd"2gy1  and  V
#
5 Cdba"2gy1 (13–77)

where b and a are the width and the height of the gate opening, respectively.

y1

a

V1

V2y2

y1

a

V1

V2y2

y1
V1

V2y2

FIGURE 13–44
Common types of underflow gates to control flow rate.
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FIGURE 13–45
Schematic and flow depth-specific 
energy diagram for flow through 
underflow gates.
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 (13-76)

用一個排放係數 (discharge coefficient) Cd 來修正此關係式，

就可以把摩擦效應考慮在內。因此閘門的排放速度與流率變成
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Underflow Gates
There are numerous types of underflow gates to control the flow rate, each 
with certain advantages and disadvantages. Underflow gates are located at 
the bottom of a wall, dam, or an open channel. Two common types of such 
gates, the sluice gate and the drum gate, are shown in Fig. 13–44. A sluice 
gate is typically vertical and has a plane surface, whereas a drum gate has a 
circular cross section with a streamlined surface.
 When the gate is partially opened, the upstream liquid accelerates as it 
approaches the gate, reaches critical speed at the gate, and accelerates further 
to supercritical speeds past the gate. Therefore, an underflow gate is analo-
gous to a converging–diverging nozzle in gas dynamics. The discharge from 
an underflow gate is called a free outflow if the liquid jet streaming out of the 
gate is open to the atmosphere (Fig. 13–44a), and it is called a drowned (or 
submerged ) outflow if the discharged liquid flashes back and submerges the 
jet (Fig. 13–44b). In drowned flow, the liquid jet undergoes a hydraulic jump, 
and thus the downstream flow is subcritical. Also, drowned outflow in volves 
a high level of turbulence and backflow, and thus a large head loss hL.
 The flow depth-specific energy diagram for flow through underflow gates with 
free and drowned outflow is given in Fig. 13–45. Note that the specific energy 
remains constant for idealized gates with negligible frictional effects (from 
point 1 to point 2a), but decreases for actual gates. The downstream is supercriti-
cal for a gate with free outflow (point 2b), but subcritical for one with drowned 
outflow (point 2c) since a drowned outflow also involves a hydraulic jump to
subcritical flow, which involves considerable mixing and energy dissipation.
 Approximating the frictional effects as negligible and the upstream (or 
reservoir) velocity to be low, it can be shown by using the Bernoulli equa-
tion that the discharge velocity of a free jet is (see Chap. 5 for details)

V 5 "2gy1 (13–76)

The frictional effects can be accounted for by modifying this relation with 
a discharge coefficient Cd. Then the discharge velocity at the gate and the 
flow rate become

V 5 Cd"2gy1  and  V
#
5 Cdba"2gy1 (13–77)

where b and a are the width and the height of the gate opening, respectively.
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Common types of underflow gates to control flow rate.
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Underflow Gates
There are numerous types of underflow gates to control the flow rate, each 
with certain advantages and disadvantages. Underflow gates are located at 
the bottom of a wall, dam, or an open channel. Two common types of such 
gates, the sluice gate and the drum gate, are shown in Fig. 13–44. A sluice 
gate is typically vertical and has a plane surface, whereas a drum gate has a 
circular cross section with a streamlined surface.
 When the gate is partially opened, the upstream liquid accelerates as it 
approaches the gate, reaches critical speed at the gate, and accelerates further 
to supercritical speeds past the gate. Therefore, an underflow gate is analo-
gous to a converging–diverging nozzle in gas dynamics. The discharge from 
an underflow gate is called a free outflow if the liquid jet streaming out of the 
gate is open to the atmosphere (Fig. 13–44a), and it is called a drowned (or 
submerged ) outflow if the discharged liquid flashes back and submerges the 
jet (Fig. 13–44b). In drowned flow, the liquid jet undergoes a hydraulic jump, 
and thus the downstream flow is subcritical. Also, drowned outflow in volves 
a high level of turbulence and backflow, and thus a large head loss hL.
 The flow depth-specific energy diagram for flow through underflow gates with 
free and drowned outflow is given in Fig. 13–45. Note that the specific energy 
remains constant for idealized gates with negligible frictional effects (from 
point 1 to point 2a), but decreases for actual gates. The downstream is supercriti-
cal for a gate with free outflow (point 2b), but subcritical for one with drowned 
outflow (point 2c) since a drowned outflow also involves a hydraulic jump to
subcritical flow, which involves considerable mixing and energy dissipation.
 Approximating the frictional effects as negligible and the upstream (or 
reservoir) velocity to be low, it can be shown by using the Bernoulli equa-
tion that the discharge velocity of a free jet is (see Chap. 5 for details)

V 5 "2gy1 (13–76)

The frictional effects can be accounted for by modifying this relation with 
a discharge coefficient Cd. Then the discharge velocity at the gate and the 
flow rate become

V 5 Cd"2gy1  and  V
#
5 Cdba"2gy1 (13–77)

where b and a are the width and the height of the gate opening, respectively.
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 (13-77)

其中 b 與 a 分別是閘門開口的寬度與高度。

圖 13-43　堰是控制流動的裝置，水
流從此種障礙物的上面流過。
(a) © Design Pics RF/The Irish Image
Collection/Getty RF; (b) Photo 
courtesy of Bryan Lewis.
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Note that the flow depth triples and the Froude number reduces to about 
one-fifth after the jump.

(b) The head loss is determined from the energy equation to be

hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 (0.8 m) 2 (2.46 m) 1

(7 m/s)2 2 (2.28 m/s)2

2(9.81 m/s2)

 5 0.572 m 

The specific energy of water before the jump and the dissipation ratio are

Es1 5 y1 1
V 2

1

2g
5 (0.8 m) 1

(7 m/s)2

2(9.81 m/s2)
5 3.30 m

5
hL

Es1

5
0.572 m

3.30 m
5 0.173

Therefore, 17.3 percent of the available head (or mechanical energy) of the 
liquid is wasted (converted to thermal energy) as a result of frictional effects 
during this hydraulic jump.

(c) The mass flow rate of water is

m
#
5 rV

#
5 rby1V1 5 (1000 kg/m3)(0.8 m)(10 m)(7 m/s) 5 56,000 kg/s

Then the power dissipation corresponding to a head loss of 0.572 m becomes

E
#
dissipated 5 m# ghL 5 (56,000 kg/s)(9.81 m/s2)(0.572 m)a 1 N

1 kg·m/s2b

5 314,000 N·m/s 5 314 kW

Discussion  The results show that the hydraulic jump is a highly dissipative 
process, wasting 314 kW of power production potential in this case. That is, 
if the water were routed to a hydraulic turbine instead of being released from 
the sluice gate, up to 314 kW of power could be generated. But this poten-
tial is converted to useless thermal energy instead of useful power, causing a 
water temperature rise of

DT 5
E
#
dissipated

m# cp

5
314 kJ/s

(56,000 kg/s)(4.18 kJ/kg·8C)
5 0.00138C

Note that a 314-kW resistance heater would cause the same temperature 
rise for water flowing at a rate of 56,000 kg/s.

13–9 ■  FLOW CONTROL AND MEASUREMENT
The flow rate in pipes and ducts is controlled by various kinds of valves. 
Liquid flow in open channels, however, is not confined, and thus the flow 
rate is controlled by partially blocking the channel. This is done by either 
allowing the liquid to flow over the obstruction or under it. An obstruction 
that allows the liquid to flow over it is called a weir (Fig. 13–43), and an 
obstruction with an adjustable opening at the bottom that allows the liquid 
to flow underneath it is called an underflow gate. Such devices can be used 
to control the flow rate through the channel as well as to measure it.

FIGURE 13–43
A weir is a flow control device 
in which the water flows over 

the obstruction.
(a) © Design Pics RF/The Irish Image 

Collection/Getty RF; (b) Photo courtesy 
of Bryan Lewis.

(a)

(b)
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圖 13-44　用來
控制流率的底流

閘門的一般形

式。
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Underflow Gates
There are numerous types of underflow gates to control the flow rate, each 
with certain advantages and disadvantages. Underflow gates are located at 
the bottom of a wall, dam, or an open channel. Two common types of such 
gates, the sluice gate and the drum gate, are shown in Fig. 13–44. A sluice 
gate is typically vertical and has a plane surface, whereas a drum gate has a 
circular cross section with a streamlined surface.
 When the gate is partially opened, the upstream liquid accelerates as it 
approaches the gate, reaches critical speed at the gate, and accelerates further 
to supercritical speeds past the gate. Therefore, an underflow gate is analo-
gous to a converging–diverging nozzle in gas dynamics. The discharge from 
an underflow gate is called a free outflow if the liquid jet streaming out of the 
gate is open to the atmosphere (Fig. 13–44a), and it is called a drowned (or 
submerged ) outflow if the discharged liquid flashes back and submerges the 
jet (Fig. 13–44b). In drowned flow, the liquid jet undergoes a hydraulic jump, 
and thus the downstream flow is subcritical. Also, drowned outflow in volves 
a high level of turbulence and backflow, and thus a large head loss hL.
 The flow depth-specific energy diagram for flow through underflow gates with 
free and drowned outflow is given in Fig. 13–45. Note that the specific energy 
remains constant for idealized gates with negligible frictional effects (from 
point 1 to point 2a), but decreases for actual gates. The downstream is supercriti-
cal for a gate with free outflow (point 2b), but subcritical for one with drowned 
outflow (point 2c) since a drowned outflow also involves a hydraulic jump to
subcritical flow, which involves considerable mixing and energy dissipation.
 Approximating the frictional effects as negligible and the upstream (or 
reservoir) velocity to be low, it can be shown by using the Bernoulli equa-
tion that the discharge velocity of a free jet is (see Chap. 5 for details)

V 5 "2gy1 (13–76)

The frictional effects can be accounted for by modifying this relation with 
a discharge coefficient Cd. Then the discharge velocity at the gate and the 
flow rate become

V 5 Cd"2gy1  and  V
#
5 Cdba"2gy1 (13–77)

where b and a are the width and the height of the gate opening, respectively.
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42 流 體 力 學

對於理想的流動，排放係數 Cd =1，但對實際通過閘門的流動 Cd <1。實驗決

定的底流閘門的 Cd 值被畫在圖 13-46 中，表示成收縮係數 y2/a 與高度比 y1/a 的函

數。注意垂直水閘門的自由出口的 Cd 值的範圍大多數介於 0.5 與 0.6 之間。對於沉

沒出口，Cd 值如預期的急速下降，並且在相同的上游條件時流率減小了。對一個

給定的 y1/a 的值，Cd 值隨 y2/a 增加而減小。

圖 13-45　通過底流閘門的流動的示
意圖與流動深度–比能量圖。
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Underflow Gates
There are numerous types of underflow gates to control the flow rate, each 
with certain advantages and disadvantages. Underflow gates are located at 
the bottom of a wall, dam, or an open channel. Two common types of such 
gates, the sluice gate and the drum gate, are shown in Fig. 13–44. A sluice 
gate is typically vertical and has a plane surface, whereas a drum gate has a 
circular cross section with a streamlined surface.
 When the gate is partially opened, the upstream liquid accelerates as it 
approaches the gate, reaches critical speed at the gate, and accelerates further 
to supercritical speeds past the gate. Therefore, an underflow gate is analo-
gous to a converging–diverging nozzle in gas dynamics. The discharge from 
an underflow gate is called a free outflow if the liquid jet streaming out of the 
gate is open to the atmosphere (Fig. 13–44a), and it is called a drowned (or 
submerged ) outflow if the discharged liquid flashes back and submerges the 
jet (Fig. 13–44b). In drowned flow, the liquid jet undergoes a hydraulic jump, 
and thus the downstream flow is subcritical. Also, drowned outflow in volves 
a high level of turbulence and backflow, and thus a large head loss hL.
 The flow depth-specific energy diagram for flow through underflow gates with 
free and drowned outflow is given in Fig. 13–45. Note that the specific energy 
remains constant for idealized gates with negligible frictional effects (from 
point 1 to point 2a), but decreases for actual gates. The downstream is supercriti-
cal for a gate with free outflow (point 2b), but subcritical for one with drowned 
outflow (point 2c) since a drowned outflow also involves a hydraulic jump to
subcritical flow, which involves considerable mixing and energy dissipation.
 Approximating the frictional effects as negligible and the upstream (or 
reservoir) velocity to be low, it can be shown by using the Bernoulli equa-
tion that the discharge velocity of a free jet is (see Chap. 5 for details)

V 5 "2gy1 (13–76)

The frictional effects can be accounted for by modifying this relation with 
a discharge coefficient Cd. Then the discharge velocity at the gate and the 
flow rate become

V 5 Cd"2gy1  and  V
#
5 Cdba"2gy1 (13–77)

where b and a are the width and the height of the gate opening, respectively.
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FIGURE 13–46
Discharge coefficients for drowned 

and free discharge from 
underflow gates.

Data from Henderson, Open Channel Flow, 
1st Edition, © 1966. Reprinted by permission of 

Pearson Education, Inc., Upper Saddle River, NJ.
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FIGURE 13–47
Schematic for Example 13–9.

 The discharge coefficient Cd � 1 for idealized flow, but Cd � 1 for actual 
flow through the gates. Experimentally determined values of Cd for under-
flow gates are plotted in Fig. 13–46 as functions of the contraction coef-
ficient y2/a and the depth ratio y1/a. Note that most values of Cd for free 
outflow from a vertical sluice gate range between 0.5 and 0.6. The Cd values 
drop sharply for drowned outflow, as expected, and the flow rate decreases 
for the same upstream conditions. For a given value of y1/a, the value of Cd 
decreases with increasing y2/a.

EXAMPLE 13–9    Sluice Gate with Drowned Outflow

Water is released from a 3-m-deep reservoir into a 6-m-wide open channel 
through a sluice gate with a 0.25-m-high opening at the channel bottom. The 
flow depth after all turbulence subsides is measured to be 1.5 m. Determine 
the rate of discharge (Fig. 13–47).

SOLUTION  Water is released from a reservoir through a sluice gate into 
an open channel. For specified flow depths, the rate of discharge is to be 
determined.
Assumptions  1 The flow is steady in the mean. 2 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The depth ratio y1/a and the contraction coefficient y2/a are

y1

a
5

3 m

0.25 m
5 12  and  
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a
5

1.5 m

0.25 m
5 6
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自由流出

沉沒出口

 例題 13-9　　有沉沒出口的水閘門

水從一個 3 m 深的水庫排放，通過一個在渠道底部有 0.25 m 高的

開口的水閘門進入一個 6 m 寬的明渠中。在所有紊流都平息後的

流動深度為 1.5 m。試決定排放率 (圖 13-47)。

解答：水從一個水庫中被排放，經過一個水閘門進入一條明渠

中。對於指定的流動深度，要決定排放率。

假設：1. 流動在平均上是穩定的。2. 渠道足夠寬使得邊際效應可

以忽略。

解析：深度比 y1/a 與收縮係數 y2/a 為
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Schematic for Example 13–9.

 The discharge coefficient Cd � 1 for idealized flow, but Cd � 1 for actual 
flow through the gates. Experimentally determined values of Cd for under-
flow gates are plotted in Fig. 13–46 as functions of the contraction coef-
ficient y2/a and the depth ratio y1/a. Note that most values of Cd for free 
outflow from a vertical sluice gate range between 0.5 and 0.6. The Cd values 
drop sharply for drowned outflow, as expected, and the flow rate decreases 
for the same upstream conditions. For a given value of y1/a, the value of Cd 
decreases with increasing y2/a.

EXAMPLE 13–9    Sluice Gate with Drowned Outflow

Water is released from a 3-m-deep reservoir into a 6-m-wide open channel 
through a sluice gate with a 0.25-m-high opening at the channel bottom. The 
flow depth after all turbulence subsides is measured to be 1.5 m. Determine 
the rate of discharge (Fig. 13–47).

SOLUTION  Water is released from a reservoir through a sluice gate into 
an open channel. For specified flow depths, the rate of discharge is to be 
determined.
Assumptions  1 The flow is steady in the mean. 2 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The depth ratio y1/a and the contraction coefficient y2/a are
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 The discharge coefficient Cd � 1 for idealized flow, but Cd � 1 for actual 
flow through the gates. Experimentally determined values of Cd for under-
flow gates are plotted in Fig. 13–46 as functions of the contraction coef-
ficient y2/a and the depth ratio y1/a. Note that most values of Cd for free 
outflow from a vertical sluice gate range between 0.5 and 0.6. The Cd values 
drop sharply for drowned outflow, as expected, and the flow rate decreases 
for the same upstream conditions. For a given value of y1/a, the value of Cd 
decreases with increasing y2/a.

EXAMPLE 13–9    Sluice Gate with Drowned Outflow

Water is released from a 3-m-deep reservoir into a 6-m-wide open channel 
through a sluice gate with a 0.25-m-high opening at the channel bottom. The 
flow depth after all turbulence subsides is measured to be 1.5 m. Determine 
the rate of discharge (Fig. 13–47).

SOLUTION  Water is released from a reservoir through a sluice gate into 
an open channel. For specified flow depths, the rate of discharge is to be 
determined.
Assumptions  1 The flow is steady in the mean. 2 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The depth ratio y1/a and the contraction coefficient y2/a are
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對應的排放係數從圖 13-46 決定為 Cd =0.47，因此排放率變成
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The corresponding discharge coefficient is determined from Fig. 13–46 to be 
Cd � 0.47. Then the discharge rate becomes

V
#
5 Cdba"2gy1 5 0.47(6 m)(0.25 m)"2(9.81 m/s2)(3 m) 5 5.41 m3/s

Discussion  In the case of free flow, the discharge coefficient would be Cd � 
0.59, with a corresponding flow rate of 6.78 m3/s. Therefore, the flow rate 
decreases considerably when the outflow is drowned.

Overflow Gates
Recall that the total mechanical energy of a liquid at any cross section of an 
open channel can be expressed in terms of heads as H � zb � y � V 2/2g, 
where y is the flow depth, zb is the elevation of the channel bottom, and V 
is the average flow velocity. During flow with negligible frictional effects 
(head loss hL � 0), the total mechanical energy remains constant, and the 
one-dimensional energy equation for open-channel flow between upstream 
section 1 and downstream section 2 is written as

 zb1 1 y1 1
V 

2
1

2g
5 zb2 1 y2 1

V 
2
2

2g
  or  Es1 5 Dzb 1 Es2 (13–78)

where Es � y � V 2/2g is the specific energy and �zb � zb2 � zb1 is the 
elevation of the bottom point of flow at section 2 relative to that at section 1. 
Therefore, the specific energy of a liquid stream increases by |�zb| during 
downhill flow (note that �zb is negative for channels inclined down), 
decreases by �zb during uphill flow, and remains constant during horizontal 
flow. (The specific energy also decreases by hL for all cases if the frictional 
effects are not negligible.)
 For a channel of constant width b, V

#
 � AcV � byV � constant in steady 

flow and V � V
#
/Ac. Then the specific energy becomes

 Es 5 y 1
V
#

2

2gb2y2 (13–79)

The variation of the specific energy Es with flow depth y for steady flow 
in a channel of constant width b is replotted in Fig. 13–48. This diagram is 
extremely valuable as it shows the allowable states during flow. Once the 
upstream conditions at a flow section 1 are specified, the state of the liquid 
at any section 2 on an Es–y diagram must fall on a point on the specific 
energy curve that passes through point 1.

Flow over a Bump with Negligible Friction
Now consider steady flow with negligible friction over a bump of height �zb 
in a horizontal channel of constant width b, as shown in Fig. 13–47. The 
energy equation in this case is, from Eq. 13–78,

 Es2 5 Es1 2 Dzb (13–80)

Therefore, the specific energy of the liquid decreases by �zb as it flows over 
the bump, and the state of the liquid on the Es–y diagram shifts to the left by 

Es

yc

Emin

Es � y

V 2

2g

y

y

Fr � 1

V � 
.

FIGURE 13–48
Variation of specific energy Es with 
depth y for a specified flow rate in 
a channel of constant width.
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 The discharge coefficient Cd � 1 for idealized flow, but Cd � 1 for actual 
flow through the gates. Experimentally determined values of Cd for under-
flow gates are plotted in Fig. 13–46 as functions of the contraction coef-
ficient y2/a and the depth ratio y1/a. Note that most values of Cd for free 
outflow from a vertical sluice gate range between 0.5 and 0.6. The Cd values 
drop sharply for drowned outflow, as expected, and the flow rate decreases 
for the same upstream conditions. For a given value of y1/a, the value of Cd 
decreases with increasing y2/a.

EXAMPLE 13–9    Sluice Gate with Drowned Outflow

Water is released from a 3-m-deep reservoir into a 6-m-wide open channel 
through a sluice gate with a 0.25-m-high opening at the channel bottom. The 
flow depth after all turbulence subsides is measured to be 1.5 m. Determine 
the rate of discharge (Fig. 13–47).

SOLUTION  Water is released from a reservoir through a sluice gate into 
an open channel. For specified flow depths, the rate of discharge is to be 
determined.
Assumptions  1 The flow is steady in the mean. 2 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The depth ratio y1/a and the contraction coefficient y2/a are

y1

a
5

3 m

0.25 m
5 12  and  

y2

a
5

1.5 m

0.25 m
5 6
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水閘門

圖 13-47　例題 13-9 的示意圖。

圖 13-46　底流閘門的自由出口與沉沒出口的排放係數。
Data from Henderson, Open Channel Flow, 1st Edition, © 1966. Reprinted by 
permission of Pearson Education, Inc., Upper Saddle River, NJ.



第 13 章　明渠流 43

討論：在自由流的情況下，排放係數將會是 Cd =0.59，而對應的流率是 6.78 m3/s。因此當出口被沉

沒時，流率可觀地下降了。

溢流閘門

在一條明渠的任何截面上，其液體的總機械能可以用水頭表示為 H = zb +y +  

V2/2g，其中 y 是流動深度，zb 是渠道底面的高度，而 V 是平均流速。在可忽略摩

擦效應的流動中 (水頭損失 hL =0)，總機械能維持為常數，而明渠流中在上游截面 

1 與下游截面 2 之間的一維的能量方程式可以寫成
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The corresponding discharge coefficient is determined from Fig. 13–46 to be 
Cd � 0.47. Then the discharge rate becomes

V
#
5 Cdba"2gy1 5 0.47(6 m)(0.25 m)"2(9.81 m/s2)(3 m) 5 5.41 m3/s

Discussion  In the case of free flow, the discharge coefficient would be Cd � 
0.59, with a corresponding flow rate of 6.78 m3/s. Therefore, the flow rate 
decreases considerably when the outflow is drowned.

Overflow Gates
Recall that the total mechanical energy of a liquid at any cross section of an 
open channel can be expressed in terms of heads as H � zb � y � V 2/2g, 
where y is the flow depth, zb is the elevation of the channel bottom, and V 
is the average flow velocity. During flow with negligible frictional effects 
(head loss hL � 0), the total mechanical energy remains constant, and the 
one-dimensional energy equation for open-channel flow between upstream 
section 1 and downstream section 2 is written as

 zb1 1 y1 1
V 

2
1

2g
5 zb2 1 y2 1

V 
2
2

2g
  or  Es1 5 Dzb 1 Es2 (13–78)

where Es � y � V 2/2g is the specific energy and �zb � zb2 � zb1 is the 
elevation of the bottom point of flow at section 2 relative to that at section 1. 
Therefore, the specific energy of a liquid stream increases by |�zb| during 
downhill flow (note that �zb is negative for channels inclined down), 
decreases by �zb during uphill flow, and remains constant during horizontal 
flow. (The specific energy also decreases by hL for all cases if the frictional 
effects are not negligible.)
 For a channel of constant width b, V

#
 � AcV � byV � constant in steady 

flow and V � V
#
/Ac. Then the specific energy becomes

 Es 5 y 1
V
#

2

2gb2y2 (13–79)

The variation of the specific energy Es with flow depth y for steady flow 
in a channel of constant width b is replotted in Fig. 13–48. This diagram is 
extremely valuable as it shows the allowable states during flow. Once the 
upstream conditions at a flow section 1 are specified, the state of the liquid 
at any section 2 on an Es–y diagram must fall on a point on the specific 
energy curve that passes through point 1.

Flow over a Bump with Negligible Friction
Now consider steady flow with negligible friction over a bump of height �zb 
in a horizontal channel of constant width b, as shown in Fig. 13–47. The 
energy equation in this case is, from Eq. 13–78,

 Es2 5 Es1 2 Dzb (13–80)

Therefore, the specific energy of the liquid decreases by �zb as it flows over 
the bump, and the state of the liquid on the Es–y diagram shifts to the left by 

Es

yc

Emin

Es � y

V 2

2g

y

y

Fr � 1

V � 
.

FIGURE 13–48
Variation of specific energy Es with 
depth y for a specified flow rate in 
a channel of constant width.
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其中 Es =y +V2/2g 是比能量且 ∆zb = zb2 − zb1 是水流在截面 2 的底面相對於在截面 

1 的底面的高度。因此在一個下坡流動中液體流的比能量增加了 |∆zb| (注意對於向

下傾斜的渠道，∆zb 是負的)，對於上波流動則減少 ∆zb，而對於水平流則維持為常

數。(如果摩擦效應不可忽略，則所有情況比能量都減少 hL。)

對一個等寬度 b 的渠道，在穩定流時，⋅V =AcV =byV 且 V =⋅V /Ac，因此比能

量變成
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The corresponding discharge coefficient is determined from Fig. 13–46 to be 
Cd � 0.47. Then the discharge rate becomes
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extremely valuable as it shows the allowable states during flow. Once the 
upstream conditions at a flow section 1 are specified, the state of the liquid 
at any section 2 on an Es–y diagram must fall on a point on the specific 
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Now consider steady flow with negligible friction over a bump of height �zb 
in a horizontal channel of constant width b, as shown in Fig. 13–47. The 
energy equation in this case is, from Eq. 13–78,
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Therefore, the specific energy of the liquid decreases by �zb as it flows over 
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FIGURE 13–48
Variation of specific energy Es with 
depth y for a specified flow rate in 
a channel of constant width.

725-786_cengel_ch13.indd   764 7/2/13   7:00 PM

 (13-79)

對在具有常數寬度 b 的渠道中的穩定流，其比能量 Es 隨著深度 

y 變化的圖重繪於圖 13-48 中。此圖極有價值因為它顯示出流動

中能夠允許的狀態。一旦在一個流動截面 1 的上游條件被指定

了，在截面 2 的液體的狀態在一個 Es-y 圖上必須落在通過點 1 

的比能量曲線的一點上。

通過隆起且摩擦可以忽略的流動

現在考慮在一個等寬度 b 的水平渠道中，通過一個高度 ∆zb 的凸起物的穩

定流動，其摩擦力可以忽略，如圖 13-49 所示。這種情況的能量方程式，從式  

(13-78)，可得

 Es2 =Es1 −∆zb (13-80)

因此，液體的比能量在其流過一個凸起物時減小了 ∆zb，並且液體的狀態，在Es-y 

圖中向左移動了 ∆zb，如圖 13-49 所示。對一個有大寬度的渠道，質量守恆方程式

圖 13-48　一個等寬度的渠道，在一
個指定流率下，比能量 Es 隨著深度 
y 的變化關係。
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The corresponding discharge coefficient is determined from Fig. 13–46 to be 
Cd � 0.47. Then the discharge rate becomes
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decreases considerably when the outflow is drowned.
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energy equation in this case is, from Eq. 13–78,
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為 y2V2 =y1V1，因此 V2 = (y1/y2)V1。流過凸起物的液體的比能量可以被表示為
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�zb, as shown in Fig. 13–49. The conservation of mass equation for a chan-
nel of large width is y2V2 � y1V1 and thus V2 � ( y1/y2)V1. Then the specific 
energy of the liquid over the bump can be expressed as

 Es2 5 y2 1
V 

2
2

2g
  S  Es1 2 Dzb 5 y2 1

V 
2
1

2g
 
y2

1

y2
2

 (13–81)

Rearranging,

 y3
2 2 (Es1 2 Dzb)y

2
2 1

V 2
1

2g
 y2

1 5 0 (13–82)

which is a third-degree polynomial equation in y2 and thus has three solu-
tions. Disregarding the negative solution, it appears that the flow depth over 
the bump can have two values.
 Now the curious question is, does the liquid level rise or drop over the 
bump? Our intuition says the entire liquid body will follow the bump and 
thus the liquid surface will rise over the bump, but this is not necessarily so. 
Noting that specific energy is the sum of the flow depth and dynamic head, 
either scenario is possible, depending on how the velocity changes. The Es–y 
diagram in Fig. 13–49 gives us the definite answer: If the flow before the 
bump is subcritical (state 1a), the flow depth y2 decreases (state 2a). If the 
decrease in flow depth is greater than the bump height (i.e., y1 � y2 � �zb), 
the free surface is suppressed. But if the flow is supercritical as it approaches 
the bump (state 1b), the flow depth rises over the bump (state 2b), creating a 
bump along the free surface.
 The situation is reversed if the channel has a depression of depth �zb 
instead of a bump: The specific energy in this case increases (so that state 2 
is to the right of state 1 on the Es–y diagram) since �zb is negative. There-
fore, the flow depth increases if the approach flow is subcritical and 
decreases if it is supercritical.
 Now let’s reconsider flow over a bump with negligible friction, as dis-
cussed earlier. As the height of the bump �zb is increased, point 2 (either 2a 
or 2b for sub- or supercritical flow) continues shifting to the left on the Es–y 
diagram, until finally reaching the critical point. That is, the flow over the 
bump is critical when the bump height is �zc � Es1 � Esc � Es1 � Emin, and 
the specific energy of the liquid reaches its minimum level.
 The question that comes to mind is, what happens if the bump height is 
increased further? Does the specific energy of the liquid continue decreas-
ing? The answer to this question is a resounding no since the liquid is 
already at its minimum energy level, and its energy cannot decrease any 
further. In other words, the liquid is already at the furthest left point on 
the Es–y diagram, and no point further left can satisfy conservation of mass 
and energy and the momentum equation. Therefore, the flow must remain 
critical. The flow at this state is said to be choked. In gas dynamics, this is 
analogous to the flow in a converging nozzle accelerating as the back pres-
sure is lowered, and reaching the speed of sound at the nozzle exit when 
the back pressure reaches the critical pressure. But the nozzle exit velocity 
remains at the sonic level no matter how much the back pressure is lowered. 
Here again, the flow is choked.

EsEmin � Ec

y

�zb

2b

2a

1a

1b

V2V1

y1 y2

�zb

FIGURE 13–49
Schematic and flow depth-specific 

energy diagram for flow over a bump 
for subcritical and supercritical 

upstream flows.
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重新整理
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ing? The answer to this question is a resounding no since the liquid is 
already at its minimum energy level, and its energy cannot decrease any 
further. In other words, the liquid is already at the furthest left point on 
the Es–y diagram, and no point further left can satisfy conservation of mass 
and energy and the momentum equation. Therefore, the flow must remain 
critical. The flow at this state is said to be choked. In gas dynamics, this is 
analogous to the flow in a converging nozzle accelerating as the back pres-
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這是 y2 的一個 3 次多項式，因此有 3 個解。捨棄負號的解，在凸起物上方的流動

深度似乎有兩個解。

現在好奇的問題是，凸起物上方的液體高度會上升或下

降？我們的直覺會以為整個液體會跟隨凸起物，因此液體表面

在凸起物上方會上升，但實際上未必如此。注意，比能量是流

動深度與動能水頭的加總，哪一種情節都是可能的，端視速度

如何改變。圖 13-49 的 Es-y 圖給我們確定的答案如果凸起物之

前的流動是次臨界的 (狀態 1a)，流動深度 y2 減小 (狀態 2a)。若

流動深度的減小量大於凸起物高度 (即 y1 −y2 >∆zb)，則自由表

面被壓低了。但若流動在接近凸起物時是超臨界的 (狀態 1b)，

流動深度在凸起物上面會上升 (狀態 2b)，在自由表面上造成一

個凸起。

若渠道有一個深度 ∆zb 的凹坑，而不是一個凸起，情況就

會相反：這種情況的比能量會增加 (在 Es-y 圖上狀態 2 會在狀

態 1 的右邊)，因為 ∆zb 是負的。因此，若接近流是次臨界的，

流動深度增加；若接近流是超臨界的，則流動深度減小。

現在，讓我們再考慮流過一個凸起物的流動，摩擦力可以

忽略，如之前討論過的。當凸起的高度 ∆zb 增加時，點 2 (不管

是次臨界流的 2a 或超臨界流的 2b) 在 Es-y 圖上持續地向左移動，直到最後達到臨

界點。也就是當凸起高度是 ∆zc =Es1 −Esc =Es1 −Emin 時，凸起上面的流動是臨界

的，並且液體的比能量達到其最低的水平。

我們心中想到的問題是，若凸起高度再被增加時會發生什麼呢？液體的比能量

是否繼續減小？這個問題的答案是很響亮的“不”，因為液體已經在其最低的能

量水平，且其能量不能進一步減小。換言之，液體已經在 Es-y 圖上的最左邊的點

上，沒有更左邊的點可以滿足質量、能量與動量的守恆方程式。因此，流動必須維

持為臨界的。這種情況的流動被稱為“阻塞”(Choked) 了。在氣體動力學中，這

類似於在收縮噴嘴中的流動，當背壓被降低時氣流加速。當背壓達到臨界壓力時，

圖 13-49　流過一個凸起物的流動深
度–比能量圖；給次臨界與超臨界的
上游流動。
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which is a third-degree polynomial equation in y2 and thus has three solu-
tions. Disregarding the negative solution, it appears that the flow depth over 
the bump can have two values.
 Now the curious question is, does the liquid level rise or drop over the 
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thus the liquid surface will rise over the bump, but this is not necessarily so. 
Noting that specific energy is the sum of the flow depth and dynamic head, 
either scenario is possible, depending on how the velocity changes. The Es–y 
diagram in Fig. 13–49 gives us the definite answer: If the flow before the 
bump is subcritical (state 1a), the flow depth y2 decreases (state 2a). If the 
decrease in flow depth is greater than the bump height (i.e., y1 � y2 � �zb), 
the free surface is suppressed. But if the flow is supercritical as it approaches 
the bump (state 1b), the flow depth rises over the bump (state 2b), creating a 
bump along the free surface.
 The situation is reversed if the channel has a depression of depth �zb 
instead of a bump: The specific energy in this case increases (so that state 2 
is to the right of state 1 on the Es–y diagram) since �zb is negative. There-
fore, the flow depth increases if the approach flow is subcritical and 
decreases if it is supercritical.
 Now let’s reconsider flow over a bump with negligible friction, as dis-
cussed earlier. As the height of the bump �zb is increased, point 2 (either 2a 
or 2b for sub- or supercritical flow) continues shifting to the left on the Es–y 
diagram, until finally reaching the critical point. That is, the flow over the 
bump is critical when the bump height is �zc � Es1 � Esc � Es1 � Emin, and 
the specific energy of the liquid reaches its minimum level.
 The question that comes to mind is, what happens if the bump height is 
increased further? Does the specific energy of the liquid continue decreas-
ing? The answer to this question is a resounding no since the liquid is 
already at its minimum energy level, and its energy cannot decrease any 
further. In other words, the liquid is already at the furthest left point on 
the Es–y diagram, and no point further left can satisfy conservation of mass 
and energy and the momentum equation. Therefore, the flow must remain 
critical. The flow at this state is said to be choked. In gas dynamics, this is 
analogous to the flow in a converging nozzle accelerating as the back pres-
sure is lowered, and reaching the speed of sound at the nozzle exit when 
the back pressure reaches the critical pressure. But the nozzle exit velocity 
remains at the sonic level no matter how much the back pressure is lowered. 
Here again, the flow is choked.

EsEmin � Ec

y

�zb

2b

2a

1a

1b

V2V1

y1 y2

�zb

FIGURE 13–49
Schematic and flow depth-specific 

energy diagram for flow over a bump 
for subcritical and supercritical 

upstream flows.
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氣流在噴嘴的出口達到音速。但是不論背壓如何再被降低，噴嘴出口速度維持在音

速的水平。這裡一樣，流動被“阻塞”了。

寬頂堰

流過高凸起的水流的討論可以總結如下：流過在一個明渠中的一個足夠高的障

礙物的水流總是臨界的。這種被故意放置在一個明渠中用來量測流率的障礙物稱為

堰 (weirs)。因此，一個足夠寬的堰上的流速是臨界速度，可以被表示為 V= gyc，

其中 yc 是臨界深度。因此流過一個寬度 b 的堰的流率被表示為

 

766
OPEN-CHANNEL FLOW

Broad-Crested Weir
The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suf-
ficiently broad weir is the critical velocity, which is expressed as V 5 !gyc, 
where yc is the critical depth. Then the flow rate over a weir of width b is 
ex pressed as

 V
#
5 AcV 5 ycb"gyc 5 bg1/2y3/2

c  (13–83)

 A broad-crested weir is a rectangular block of height Pw and length Lw 
that has a horizontal crest over which critical flow occurs (Fig. 13–50). The 
upstream head above the top surface of the weir is called the weir head and 
is denoted by H. To obtain a relation for the critical depth yc in terms of 
weir head H, we write the energy equation between a section upstream and 
a section over the weir for flow with negligible friction as

 H 1 Pw 1
V 

2
1

2g
5 yc 1 Pw 1

V 2
c

2g
 (13–84)

Cancelling Pw from both sides and substituting Vc 5 !gyc give

 yc 5
2

3
 aH 1

V 
2
1

2g
b  (13–85)

Substituting into Eq. 13–83, the flow rate for this idealized flow case with 
negligible friction is determined to be

 V
#
ideal 5 b"ga2

3
b

3/2

aH 1
V  

2
1

2g
b

3/2

 (13–86)

This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
does not consider the frictional effects. These effects are typically accounted 
for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
determined weir discharge coefficient Cwd as

Broad-crested weir: V
#
5 Cwd, broadb"ga2

3
b

3/2

aH 1
V  

2
1

2g
b

3/2

 (13–87)

where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)

 Cwd, broad 5
0.65

"1 1 H/Pw

 (13–88)

More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
weirs. Then the flow rate is approximated as

Broad-crested weir with low V1: V
#
> Cwd, broadb"ga2

3
b

3/2

H 3/2 (13–89)

V1

Pw

H Vc

Lw

yc

FIGURE 13–50
Flow over a broad-crested weir.
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 (13-83)

寬頂堰 (broad-crested weir) 是一個矩形塊，高度 Pw、長度 Lw，有一個水平的

頂部，臨界流發生在其上 (圖 13-50)。上游高於堰的頂部平面的

水頭稱為堰水頭 (weir head) 並用 H 表示。為了得到一個用堰水

頭 H 表示的臨界深度 yc 的關係式，我們對忽略摩擦的流動寫出

在一個上游截面與在堰上面的一個截面之間的能量方程式
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Broad-Crested Weir
The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suf-
ficiently broad weir is the critical velocity, which is expressed as V 5 !gyc, 
where yc is the critical depth. Then the flow rate over a weir of width b is 
ex pressed as
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#
5 AcV 5 ycb"gyc 5 bg1/2y3/2

c  (13–83)

 A broad-crested weir is a rectangular block of height Pw and length Lw 
that has a horizontal crest over which critical flow occurs (Fig. 13–50). The 
upstream head above the top surface of the weir is called the weir head and 
is denoted by H. To obtain a relation for the critical depth yc in terms of 
weir head H, we write the energy equation between a section upstream and 
a section over the weir for flow with negligible friction as

 H 1 Pw 1
V 

2
1

2g
5 yc 1 Pw 1

V 2
c

2g
 (13–84)

Cancelling Pw from both sides and substituting Vc 5 !gyc give

 yc 5
2

3
 aH 1

V 
2
1

2g
b  (13–85)

Substituting into Eq. 13–83, the flow rate for this idealized flow case with 
negligible friction is determined to be

 V
#
ideal 5 b"ga2

3
b

3/2

aH 1
V  

2
1

2g
b

3/2

 (13–86)

This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
does not consider the frictional effects. These effects are typically accounted 
for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
determined weir discharge coefficient Cwd as

Broad-crested weir: V
#
5 Cwd, broadb"ga2

3
b

3/2

aH 1
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2
1

2g
b

3/2

 (13–87)

where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)

 Cwd, broad 5
0.65

"1 1 H/Pw

 (13–88)

More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
weirs. Then the flow rate is approximated as

Broad-crested weir with low V1: V
#
> Cwd, broadb"ga2

3
b

3/2

H 3/2 (13–89)

V1

Pw

H Vc

Lw

yc

FIGURE 13–50
Flow over a broad-crested weir.
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 (13-84)

從兩邊消去 Pw 並代入 Vc = gyc，得到
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The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suf-
ficiently broad weir is the critical velocity, which is expressed as V 5 !gyc, 
where yc is the critical depth. Then the flow rate over a weir of width b is 
ex pressed as
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 A broad-crested weir is a rectangular block of height Pw and length Lw 
that has a horizontal crest over which critical flow occurs (Fig. 13–50). The 
upstream head above the top surface of the weir is called the weir head and 
is denoted by H. To obtain a relation for the critical depth yc in terms of 
weir head H, we write the energy equation between a section upstream and 
a section over the weir for flow with negligible friction as
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Substituting into Eq. 13–83, the flow rate for this idealized flow case with 
negligible friction is determined to be

 V
#
ideal 5 b"ga2

3
b

3/2

aH 1
V  

2
1

2g
b

3/2

 (13–86)

This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
does not consider the frictional effects. These effects are typically accounted 
for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
determined weir discharge coefficient Cwd as
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where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)

 Cwd, broad 5
0.65

"1 1 H/Pw

 (13–88)

More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
weirs. Then the flow rate is approximated as

Broad-crested weir with low V1: V
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> Cwd, broadb"ga2

3
b

3/2

H 3/2 (13–89)
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FIGURE 13–50
Flow over a broad-crested weir.
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 (13-85)

代入式 (13-83) 中，對這個忽略摩擦的理想流動的情況，流率被決定為
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The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suf-
ficiently broad weir is the critical velocity, which is expressed as V 5 !gyc, 
where yc is the critical depth. Then the flow rate over a weir of width b is 
ex pressed as
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 A broad-crested weir is a rectangular block of height Pw and length Lw 
that has a horizontal crest over which critical flow occurs (Fig. 13–50). The 
upstream head above the top surface of the weir is called the weir head and 
is denoted by H. To obtain a relation for the critical depth yc in terms of 
weir head H, we write the energy equation between a section upstream and 
a section over the weir for flow with negligible friction as
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Cancelling Pw from both sides and substituting Vc 5 !gyc give

 yc 5
2

3
 aH 1

V 
2
1

2g
b  (13–85)

Substituting into Eq. 13–83, the flow rate for this idealized flow case with 
negligible friction is determined to be
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This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
does not consider the frictional effects. These effects are typically accounted 
for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
determined weir discharge coefficient Cwd as
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where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)

 Cwd, broad 5
0.65

"1 1 H/Pw

 (13–88)

More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
weirs. Then the flow rate is approximated as

Broad-crested weir with low V1: V
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> Cwd, broadb"ga2

3
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H 3/2 (13–89)
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Flow over a broad-crested weir.
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 (13-86)

這個關係式顯示出流率與流動參數之間的函數相依關係，但是因為它沒有考慮到摩

擦效應而高估流率約幾個百分比。這個效應一般用一個實驗決定的堰流係數 (weir 

discharge coefficient) Cwd 來修正理論關係式 (13-86) 成為

寬頂堰： 
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Broad-Crested Weir
The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suf-
ficiently broad weir is the critical velocity, which is expressed as V 5 !gyc, 
where yc is the critical depth. Then the flow rate over a weir of width b is 
ex pressed as
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c  (13–83)

 A broad-crested weir is a rectangular block of height Pw and length Lw 
that has a horizontal crest over which critical flow occurs (Fig. 13–50). The 
upstream head above the top surface of the weir is called the weir head and 
is denoted by H. To obtain a relation for the critical depth yc in terms of 
weir head H, we write the energy equation between a section upstream and 
a section over the weir for flow with negligible friction as
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Cancelling Pw from both sides and substituting Vc 5 !gyc give

 yc 5
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Substituting into Eq. 13–83, the flow rate for this idealized flow case with 
negligible friction is determined to be

 V
#
ideal 5 b"ga2
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 (13–86)

This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
does not consider the frictional effects. These effects are typically accounted 
for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
determined weir discharge coefficient Cwd as
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where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)

 Cwd, broad 5
0.65

"1 1 H/Pw

 (13–88)

More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
weirs. Then the flow rate is approximated as

Broad-crested weir with low V1: V
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> Cwd, broadb"ga2

3
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3/2

H 3/2 (13–89)
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FIGURE 13–50
Flow over a broad-crested weir.

725-786_cengel_ch13.indd   766 7/2/13   7:00 PM

 (13-87)

其中寬頂堰的合理正確的堰流係數可以從下式得到 (Chow, 1959)

圖 13-50　在一個寬頂堰上的流動。
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The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suf-
ficiently broad weir is the critical velocity, which is expressed as V 5 !gyc, 
where yc is the critical depth. Then the flow rate over a weir of width b is 
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that has a horizontal crest over which critical flow occurs (Fig. 13–50). The 
upstream head above the top surface of the weir is called the weir head and 
is denoted by H. To obtain a relation for the critical depth yc in terms of 
weir head H, we write the energy equation between a section upstream and 
a section over the weir for flow with negligible friction as
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Substituting into Eq. 13–83, the flow rate for this idealized flow case with 
negligible friction is determined to be
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This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
does not consider the frictional effects. These effects are typically accounted 
for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
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where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)
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 (13–88)

More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
weirs. Then the flow rate is approximated as
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Broad-Crested Weir
The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suf-
ficiently broad weir is the critical velocity, which is expressed as V 5 !gyc, 
where yc is the critical depth. Then the flow rate over a weir of width b is 
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 A broad-crested weir is a rectangular block of height Pw and length Lw 
that has a horizontal crest over which critical flow occurs (Fig. 13–50). The 
upstream head above the top surface of the weir is called the weir head and 
is denoted by H. To obtain a relation for the critical depth yc in terms of 
weir head H, we write the energy equation between a section upstream and 
a section over the weir for flow with negligible friction as
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This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
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for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
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where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)
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 (13–88)

More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
weirs. Then the flow rate is approximated as
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Flow over a broad-crested weir.
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 (13-88)

更正確但比較複雜的 Cwd, broad 的關係式也可以從文獻中獲得 (如 Ackers, 1978)。同

時，上游速度 V1 通常很小，可以被忽略。特別是在高堰中情況更是如此。因此流

率被近似為

具有低 V1 的寬頂堰： 
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The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suf-
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Substituting into Eq. 13–83, the flow rate for this idealized flow case with 
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This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
does not consider the frictional effects. These effects are typically accounted 
for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
determined weir discharge coefficient Cwd as
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where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)
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More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
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FIGURE 13–50
Flow over a broad-crested weir.
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 (13-89)

應該永遠記住使用式 (13-87) 到 (13-89) 的基本要求是堰之上面必須建立起臨界

流，這將對堰長度 Lw 加上一些限制。如果堰太長 (Lw >12H)，壁面剪應力主宰並

造成堰上的流動變成是次臨界的；如果堰太短 (Lw <2H)，液體可能無法加速至臨

界速度。根據觀察，寬邊堰的適當長度是 2H <Lw <12H。注意，對一個流動太長

的堰，對另一個流動可能太短，要看堰水頭 H 的值而定。因此，必須先知道流率

的範圍才能選擇一個堰。

銳緣堰

一個銳緣堰 (sharp-crested weir) 是放置於渠道中的一個垂直平板，強迫液體流

過一個開口來量測流率。堰的形式特徵決定於開口的形狀。一個具有平直上緣的垂

直細平板被稱為矩形堰因為在其上方的流動截面是矩形的；一個具有三角形開口的

堰則被稱為三角堰等等。

上游流動是次臨界的且在其接近堰時變成臨界的。液體持續加速並以像自由噴

束的超臨界流排出。加速的原因是自由表面高度的穩定下降，並將高度水頭轉換

成速度水頭。以下所給出的流率關係式是根據液體經過堰的自由溢水，稱為水舌 

(nappe)，從堰排出所得到的。清空水舌之下的空間來確保其下的大氣壓力可能是

必要的。也可得到沉沒堰的經驗關係式。

考慮液體流過放置在一個水平渠道的銳緣堰的流動，如圖 

13-51 所示。為了簡單起見，堰上游的流速在一個垂直截面 1 

上被近似為幾乎是常數。此上游液體的總能量被表示為相對於

渠道底面的水頭時即為比能量，這是流動深度與速度水頭的加

總，即 y1 +V1
2/2g，其中 y1 =H +Pw。堰上方的流動並不是一

維的。因為在通過堰上方時，液體的速度與方向都有很大的改

變。但是水舌內的壓力是大氣的。

一個堰上方液體速度變化的簡單關係式的獲得是假設摩擦力可以忽略，並寫出

在上游流動中的一點 (點 1) 與堰上方 (距離上游液體高度的垂直距離 h) 的一點之間

圖 13-51　通過銳緣堰上方的流動。
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 It should always be kept in mind that the basic requirement for the use 
of Eqs. 13–87 to 13–89 is the establishment of critical flow above the weir, 
and this puts some limitations on the weir length Lw. If the weir is too long 
(Lw � 12H ), wall shear effects dominate and cause the flow over the weir to 
be subcritical. If the weir is too short (Lw � 2H ), the liquid may not be able 
to accelerate to critical velocity. Based on observations, the proper length of 
the broad-crested weir is 2H � Lw � 12H. Note that a weir that is too long 
for one flow may be too short for another flow, depending on the value of 
the weir head H. Therefore, the range of flow rates should be known before 
a weir can be selected.

Sharp-Crested Weirs
A sharp-crested weir is a vertical plate placed in a channel that forces the 
liquid to flow through an opening to measure the flow rate. The type of the 
weir is characterized by the shape of the opening. A vertical thin plate with 
a straight top edge is referred to as rectangular weir since the cross section 
of the flow over it is rectangular; a weir with a triangular opening is referred 
to as a triangular weir; etc.
 Upstream flow is subcritical and becomes critical as it approaches the 
weir. The liquid continues to accelerate and discharges as a supercritical flow 
stream that resembles a free jet. The reason for acceleration is the steady 
decline in the elevation of the free surface, and the conversion of this ele-
vation head into velocity head. The flow-rate correlations given below are 
based on the free overfall of liquid discharge past the weir, called a nappe, 
being clear from the weir. It may be necessary to ventilate the space under 
the nappe to assure atmospheric pressure underneath. Empirical relations for 
drowned weirs are also available.
 Consider the flow of a liquid over a sharp-crested weir placed in a hori-
zontal channel, as shown in Fig. 13–51. For simplicity, the velocity upstream 
of the weir is approximated as being nearly constant through vertical cross 
section 1. The total energy of the upstream liquid expressed as a head rela-
tive to the channel bottom is the specific energy, which is the sum of the 
flow depth and the velocity head. That is, y1 1 V 1

2/2g, where y1 � H � Pw. 
The flow over the weir is not one-dimensional since the liquid undergoes 
large changes in velocity and direction over the weir. But the pressure 
within the nappe is atmospheric.
 A simple relation for the variation of liquid velocity over the weir is 
ob tained by assuming negligible friction and writing the Bernoulli equation 
between a point in upstream flow (point 1) and a point over the weir at a 
distance h from the upstream liquid level as

 H 1 Pw 1
V 2

1

2g
5 (H 1 Pw 2 h) 1

u2
2

2g
 (13–90)

Cancelling the common terms and solving for u2, the idealized velocity dis-
tribution over the weir is determined to be

 u2 5 "2gh 1 V 2
1 (13–91)

In reality, the liquid surface level drops somewhat over the weir as the liquid 
starts its free overfall (the drawdown effect at the top) and the flow separation 
at the top edge of the weir further narrows the nappe (the contraction effect 
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FIGURE 13–51
Flow over a sharp-crested weir.
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of Eqs. 13–87 to 13–89 is the establishment of critical flow above the weir, 
and this puts some limitations on the weir length Lw. If the weir is too long 
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liquid to flow through an opening to measure the flow rate. The type of the 
weir is characterized by the shape of the opening. A vertical thin plate with 
a straight top edge is referred to as rectangular weir since the cross section 
of the flow over it is rectangular; a weir with a triangular opening is referred 
to as a triangular weir; etc.
 Upstream flow is subcritical and becomes critical as it approaches the 
weir. The liquid continues to accelerate and discharges as a supercritical flow 
stream that resembles a free jet. The reason for acceleration is the steady 
decline in the elevation of the free surface, and the conversion of this ele-
vation head into velocity head. The flow-rate correlations given below are 
based on the free overfall of liquid discharge past the weir, called a nappe, 
being clear from the weir. It may be necessary to ventilate the space under 
the nappe to assure atmospheric pressure underneath. Empirical relations for 
drowned weirs are also available.
 Consider the flow of a liquid over a sharp-crested weir placed in a hori-
zontal channel, as shown in Fig. 13–51. For simplicity, the velocity upstream 
of the weir is approximated as being nearly constant through vertical cross 
section 1. The total energy of the upstream liquid expressed as a head rela-
tive to the channel bottom is the specific energy, which is the sum of the 
flow depth and the velocity head. That is, y1 1 V 1

2/2g, where y1 � H � Pw. 
The flow over the weir is not one-dimensional since the liquid undergoes 
large changes in velocity and direction over the weir. But the pressure 
within the nappe is atmospheric.
 A simple relation for the variation of liquid velocity over the weir is 
ob tained by assuming negligible friction and writing the Bernoulli equation 
between a point in upstream flow (point 1) and a point over the weir at a 
distance h from the upstream liquid level as
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Cancelling the common terms and solving for u2, the idealized velocity dis-
tribution over the weir is determined to be
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In reality, the liquid surface level drops somewhat over the weir as the liquid 
starts its free overfall (the drawdown effect at the top) and the flow separation 
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 (13-90)

消去共同項並解出 u2，堰上方理想化後的速度分佈是
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 It should always be kept in mind that the basic requirement for the use 
of Eqs. 13–87 to 13–89 is the establishment of critical flow above the weir, 
and this puts some limitations on the weir length Lw. If the weir is too long 
(Lw � 12H), wall shear effects dominate and cause the flow over the weir to 
be subcritical. If the weir is too short (Lw � 2H ), the liquid may not be able 
to accelerate to critical velocity. Based on observations, the proper length of 
the broad-crested weir is 2H � Lw � 12H. Note that a weir that is too long 
for one flow may be too short for another flow, depending on the value of 
the weir head H. Therefore, the range of flow rates should be known before 
a weir can be selected.
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A sharp-crested weir is a vertical plate placed in a channel that forces the 
liquid to flow through an opening to measure the flow rate. The type of the 
weir is characterized by the shape of the opening. A vertical thin plate with 
a straight top edge is referred to as rectangular weir since the cross section 
of the flow over it is rectangular; a weir with a triangular opening is referred 
to as a triangular weir; etc.
 Upstream flow is subcritical and becomes critical as it approaches the 
weir. The liquid continues to accelerate and discharges as a supercritical flow 
stream that resembles a free jet. The reason for acceleration is the steady 
decline in the elevation of the free surface, and the conversion of this ele-
vation head into velocity head. The flow-rate correlations given below are 
based on the free overfall of liquid discharge past the weir, called a nappe, 
being clear from the weir. It may be necessary to ventilate the space under 
the nappe to assure atmospheric pressure underneath. Empirical relations for 
drowned weirs are also available.
 Consider the flow of a liquid over a sharp-crested weir placed in a hori-
zontal channel, as shown in Fig. 13–51. For simplicity, the velocity upstream 
of the weir is approximated as being nearly constant through vertical cross 
section 1. The total energy of the upstream liquid expressed as a head rela-
tive to the channel bottom is the specific energy, which is the sum of the 
flow depth and the velocity head. That is, y1 1 V 1

2/2g, where y1 � H � Pw. 
The flow over the weir is not one-dimensional since the liquid undergoes 
large changes in velocity and direction over the weir. But the pressure 
within the nappe is atmospheric.
 A simple relation for the variation of liquid velocity over the weir is 
ob tained by assuming negligible friction and writing the Bernoulli equation 
between a point in upstream flow (point 1) and a point over the weir at a 
distance h from the upstream liquid level as

 H 1 Pw 1
V 2

1

2g
5 (H 1 Pw 2 h) 1

u2
2

2g
 (13–90)

Cancelling the common terms and solving for u2, the idealized velocity dis-
tribution over the weir is determined to be
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In reality, the liquid surface level drops somewhat over the weir as the liquid 
starts its free overfall (the drawdown effect at the top) and the flow separation 
at the top edge of the weir further narrows the nappe (the contraction effect 
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 (13-91)

事實上，當堰上的液體開始其自由溢水時 (上方的拉下效應)，液體表面會下降一

些，並且在堰上緣的流動分離進一步窄化了水舌 (底部的收縮效應)。結果，堰上方

的流動高度遠小於 H，當拉下與收縮效應為了簡單起見而被忽略時，流率的獲得是

將流速與微分流動面積的乘積對整個流動面積作積分，
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at the bottom). As a result, the flow height over the weir is considerably 
smaller than H. When the drawdown and contraction effects are disregarded 
for simplicity, the flow rate is obtained by integrating the product of the 
flow velocity and the differential flow area over the entire flow area,

 V
#
5 #

Ac

 u2 dAc2 5 #
H

h50
 "2gh 1 V 

2
1 w dh (13–92)

where w is the width of the flow area at distance h from the upstream free 
surface.
 In general, w is a function of h. But for a rectangular weir, w � b, which 
is constant. Then the integration can be performed easily, and the flow rate 
for a rectangular weir for idealized flow with negligible friction and negli-
gible drawdown and contraction effects is determined to be

 V
#
ideal 5

2

3
 b"2g c aH 1

V  
2
1

2g
b

3/2

2 aV  
2
1

2g
b

3/2

d  (13–93)

When the weir height is large relative to the weir head (Pw �� H), the 
upstream velocity V1 is low and the upstream velocity head can be neglected. 
That is, V 1

2/2g �� H. Then,

 V
#
ideal, rec >

2

3
 b"2gH3/2 (13–94)

Therefore, the flow rate can be determined from knowledge of two geometric 
quantities: the crest width b and the weir head H, which is the vertical dis-
tance between the weir crest and the upstream free surface.
 This simplified analysis gives the general form of the flow-rate relation, 
but it needs to be modified to account for the frictional and surface tension 
effects, which play a secondary role, as well as the drawdown and contrac-
tion effects. Again this is done by multiplying the ideal flow-rate relations by 
an experimentally determined weir discharge coefficient Cwd. Then the flow 
rate for a sharp-crested rectangular weir is expressed as

Sharp-crested rectangular weir: V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2 (13–95)

where, from Ref. 1 (Ackers, 1978),

 Cwd, rec 5 0.598 1 0.0897
H

Pw

  for  
H

Pw

# 2 (13–96)

This formula is applicable over a wide range of upstream Reynolds number 
defined as Re � V1H/�. More precise but also more complex correlations 
are also available in the literature. Note that Eq. 13–95 is valid for full-width 
rectangular weirs. If the width of the weir is less than the channel width so 
that the flow is forced to contract, an additional coefficient for contraction 
correction should be incorporated to properly account for this effect.
 Another type of sharp-crested weir commonly used for flow measurement 
is the triangular weir (also called the V-notch weir) shown in Fig. 13–52. 
The triangular weir has the advantage that it maintains a high weir head H 
even for small flow rates because of the decreasing flow area with decreasing H, 
and thus it can be used to measure a wide range of flow rates accurately.
 From geometric consideration, the notch width can be expressed as 
w � 2(H � h) tan(�/2), where � is the V-notch angle. Substituting into 
Eq. 13–92 and performing the integration give the ideal flow rate for a 
triangular weir to be

�
H

w h

Pw

FIGURE 13–52
A triangular (or V-notch) sharp-crested 
weir plate geometry. The view is from 
downstream looking upstream.
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 (13-92)

其中 w 是流動面積在離上游自由表面垂直距離 h 處的寬度。

一般而言，w 是 h 的函數。但對一個矩形堰，w =b，是一個常數。因此積分

可以被輕易地執行，使矩形堰上的流率在忽略摩擦力且忽略拉下與收縮效應的理想

流動情況下，可以被決定為
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at the bottom). As a result, the flow height over the weir is considerably 
smaller than H. When the drawdown and contraction effects are disregarded 
for simplicity, the flow rate is obtained by integrating the product of the 
flow velocity and the differential flow area over the entire flow area,
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where w is the width of the flow area at distance h from the upstream free 
surface.
 In general, w is a function of h. But for a rectangular weir, w � b, which 
is constant. Then the integration can be performed easily, and the flow rate 
for a rectangular weir for idealized flow with negligible friction and negli-
gible drawdown and contraction effects is determined to be
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When the weir height is large relative to the weir head (Pw �� H), the 
upstream velocity V1 is low and the upstream velocity head can be neglected. 
That is, V 1

2/2g �� H. Then,
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Therefore, the flow rate can be determined from knowledge of two geometric 
quantities: the crest width b and the weir head H, which is the vertical dis-
tance between the weir crest and the upstream free surface.
 This simplified analysis gives the general form of the flow-rate relation, 
but it needs to be modified to account for the frictional and surface tension 
effects, which play a secondary role, as well as the drawdown and contrac-
tion effects. Again this is done by multiplying the ideal flow-rate relations by 
an experimentally determined weir discharge coefficient Cwd. Then the flow 
rate for a sharp-crested rectangular weir is expressed as
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where, from Ref. 1 (Ackers, 1978),
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This formula is applicable over a wide range of upstream Reynolds number 
defined as Re � V1H/�. More precise but also more complex correlations 
are also available in the literature. Note that Eq. 13–95 is valid for full-width 
rectangular weirs. If the width of the weir is less than the channel width so 
that the flow is forced to contract, an additional coefficient for contraction 
correction should be incorporated to properly account for this effect.
 Another type of sharp-crested weir commonly used for flow measurement 
is the triangular weir (also called the V-notch weir) shown in Fig. 13–52. 
The triangular weir has the advantage that it maintains a high weir head H 
even for small flow rates because of the decreasing flow area with decreasing H, 
and thus it can be used to measure a wide range of flow rates accurately.
 From geometric consideration, the notch width can be expressed as 
w � 2(H � h) tan(�/2), where � is the V-notch angle. Substituting into 
Eq. 13–92 and performing the integration give the ideal flow rate for a 
triangular weir to be
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FIGURE 13–52
A triangular (or V-notch) sharp-crested 
weir plate geometry. The view is from 
downstream looking upstream.
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 (13-93)

當堰高度遠大於堰水頭時 (Pw >>H)，上游速度很小使得上游速度水頭可以被忽

略，即 V1
2/2g<<H。因此，
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at the bottom). As a result, the flow height over the weir is considerably 
smaller than H. When the drawdown and contraction effects are disregarded 
for simplicity, the flow rate is obtained by integrating the product of the 
flow velocity and the differential flow area over the entire flow area,
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where w is the width of the flow area at distance h from the upstream free 
surface.
 In general, w is a function of h. But for a rectangular weir, w � b, which 
is constant. Then the integration can be performed easily, and the flow rate 
for a rectangular weir for idealized flow with negligible friction and negli-
gible drawdown and contraction effects is determined to be
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When the weir height is large relative to the weir head (Pw �� H), the 
upstream velocity V1 is low and the upstream velocity head can be neglected. 
That is, V 1

2/2g �� H. Then,
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Therefore, the flow rate can be determined from knowledge of two geometric 
quantities: the crest width b and the weir head H, which is the vertical dis-
tance between the weir crest and the upstream free surface.
 This simplified analysis gives the general form of the flow-rate relation, 
but it needs to be modified to account for the frictional and surface tension 
effects, which play a secondary role, as well as the drawdown and contrac-
tion effects. Again this is done by multiplying the ideal flow-rate relations by 
an experimentally determined weir discharge coefficient Cwd. Then the flow 
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This formula is applicable over a wide range of upstream Reynolds number 
defined as Re � V1H/�. More precise but also more complex correlations 
are also available in the literature. Note that Eq. 13–95 is valid for full-width 
rectangular weirs. If the width of the weir is less than the channel width so 
that the flow is forced to contract, an additional coefficient for contraction 
correction should be incorporated to properly account for this effect.
 Another type of sharp-crested weir commonly used for flow measurement 
is the triangular weir (also called the V-notch weir) shown in Fig. 13–52. 
The triangular weir has the advantage that it maintains a high weir head H 
even for small flow rates because of the decreasing flow area with decreasing H, 
and thus it can be used to measure a wide range of flow rates accurately.
 From geometric consideration, the notch width can be expressed as 
w � 2(H � h) tan(�/2), where � is the V-notch angle. Substituting into 
Eq. 13–92 and performing the integration give the ideal flow rate for a 
triangular weir to be

�
H

w h

Pw

FIGURE 13–52
A triangular (or V-notch) sharp-crested 
weir plate geometry. The view is from 
downstream looking upstream.
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 (13-94)

因此，流率可以從兩個幾何量的知識來決定：頂面寬度 b 與堰水頭 H，這是堰頂面

與上游自由表面之間的垂直距離。

這個簡化分析給出流率關係式的一般形式，但是它需要被修正來考慮到摩擦與

表面張力效應，這些扮演著次要角色，也要考慮到拉下與收縮效應。再者，這是藉

著將理想流率關係式乘以一個用實驗決定的排放係數 Cwd 做到的。因此銳緣矩形堰

的流率可以被表示為

銳緣矩形堰： 
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at the bottom). As a result, the flow height over the weir is considerably 
smaller than H. When the drawdown and contraction effects are disregarded 
for simplicity, the flow rate is obtained by integrating the product of the 
flow velocity and the differential flow area over the entire flow area,
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where w is the width of the flow area at distance h from the upstream free 
surface.
 In general, w is a function of h. But for a rectangular weir, w � b, which 
is constant. Then the integration can be performed easily, and the flow rate 
for a rectangular weir for idealized flow with negligible friction and negli-
gible drawdown and contraction effects is determined to be
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When the weir height is large relative to the weir head (Pw �� H), the 
upstream velocity V1 is low and the upstream velocity head can be neglected. 
That is, V 1

2/2g �� H. Then,

 V
#
ideal, rec >

2

3
 b"2gH3/2 (13–94)

Therefore, the flow rate can be determined from knowledge of two geometric 
quantities: the crest width b and the weir head H, which is the vertical dis-
tance between the weir crest and the upstream free surface.
 This simplified analysis gives the general form of the flow-rate relation, 
but it needs to be modified to account for the frictional and surface tension 
effects, which play a secondary role, as well as the drawdown and contrac-
tion effects. Again this is done by multiplying the ideal flow-rate relations by 
an experimentally determined weir discharge coefficient Cwd. Then the flow 
rate for a sharp-crested rectangular weir is expressed as

Sharp-crested rectangular weir: V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2 (13–95)

where, from Ref. 1 (Ackers, 1978),

 Cwd, rec 5 0.598 1 0.0897
H

Pw

  for  
H

Pw

# 2 (13–96)

This formula is applicable over a wide range of upstream Reynolds number 
defined as Re � V1H/�. More precise but also more complex correlations 
are also available in the literature. Note that Eq. 13–95 is valid for full-width 
rectangular weirs. If the width of the weir is less than the channel width so 
that the flow is forced to contract, an additional coefficient for contraction 
correction should be incorporated to properly account for this effect.
 Another type of sharp-crested weir commonly used for flow measurement 
is the triangular weir (also called the V-notch weir) shown in Fig. 13–52. 
The triangular weir has the advantage that it maintains a high weir head H 
even for small flow rates because of the decreasing flow area with decreasing H, 
and thus it can be used to measure a wide range of flow rates accurately.
 From geometric consideration, the notch width can be expressed as 
w � 2(H � h) tan(�/2), where � is the V-notch angle. Substituting into 
Eq. 13–92 and performing the integration give the ideal flow rate for a 
triangular weir to be

�
H

w h

Pw

FIGURE 13–52
A triangular (or V-notch) sharp-crested 
weir plate geometry. The view is from 
downstream looking upstream.
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其中，從 Ref. 1 (Ackers, 1978)，
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at the bottom). As a result, the flow height over the weir is considerably 
smaller than H. When the drawdown and contraction effects are disregarded 
for simplicity, the flow rate is obtained by integrating the product of the 
flow velocity and the differential flow area over the entire flow area,

 V
#
5 #

Ac

 u2 dAc2 5 #
H

h50
 "2gh 1 V 

2
1 w dh (13–92)

where w is the width of the flow area at distance h from the upstream free 
surface.
 In general, w is a function of h. But for a rectangular weir, w � b, which 
is constant. Then the integration can be performed easily, and the flow rate 
for a rectangular weir for idealized flow with negligible friction and negli-
gible drawdown and contraction effects is determined to be

 V
#
ideal 5

2

3
 b"2g c aH 1

V  
2
1

2g
b

3/2

2 aV  
2
1

2g
b

3/2

d  (13–93)

When the weir height is large relative to the weir head (Pw �� H), the 
upstream velocity V1 is low and the upstream velocity head can be neglected. 
That is, V 1

2/2g �� H. Then,

 V
#
ideal, rec >

2

3
 b"2gH3/2 (13–94)

Therefore, the flow rate can be determined from knowledge of two geometric 
quantities: the crest width b and the weir head H, which is the vertical dis-
tance between the weir crest and the upstream free surface.
 This simplified analysis gives the general form of the flow-rate relation, 
but it needs to be modified to account for the frictional and surface tension 
effects, which play a secondary role, as well as the drawdown and contrac-
tion effects. Again this is done by multiplying the ideal flow-rate relations by 
an experimentally determined weir discharge coefficient Cwd. Then the flow 
rate for a sharp-crested rectangular weir is expressed as

Sharp-crested rectangular weir: V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2 (13–95)

where, from Ref. 1 (Ackers, 1978),

 Cwd, rec 5 0.598 1 0.0897
H

Pw

  for  
H

Pw

# 2 (13–96)

This formula is applicable over a wide range of upstream Reynolds number 
defined as Re � V1H/�. More precise but also more complex correlations 
are also available in the literature. Note that Eq. 13–95 is valid for full-width 
rectangular weirs. If the width of the weir is less than the channel width so 
that the flow is forced to contract, an additional coefficient for contraction 
correction should be incorporated to properly account for this effect.
 Another type of sharp-crested weir commonly used for flow measurement 
is the triangular weir (also called the V-notch weir) shown in Fig. 13–52. 
The triangular weir has the advantage that it maintains a high weir head H 
even for small flow rates because of the decreasing flow area with decreasing H, 
and thus it can be used to measure a wide range of flow rates accurately.
 From geometric consideration, the notch width can be expressed as 
w � 2(H � h) tan(�/2), where � is the V-notch angle. Substituting into 
Eq. 13–92 and performing the integration give the ideal flow rate for a 
triangular weir to be

�
H

w h

Pw

FIGURE 13–52
A triangular (or V-notch) sharp-crested 
weir plate geometry. The view is from 
downstream looking upstream.
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 (13-96)

此公式適用於範圍寬廣的雷諾數，定義為 Re =V1H/n。更精確但也更複雜的相關式

也可以在文獻中找到。注意式 (13-95) 適用於全寬度的矩形堰。如果堰的寬度小於

渠道寬度使得流動被迫收縮，就應該包括一個修正的收縮係數來適當地考慮到這個

影響。

另一種經常會用來作流量量測的銳緣堰是三角形堰 (也稱為 

V 形堰)，示於圖 13-52 中。三角形堰的優點是即使對小流率也

維持一個高的堰水頭 H，因為當堰水頭 H 減小時流動面積跟著

減小，因此它可被用來正確的量測一個比較寬的流率範圍。

從幾何上考量，V形寬度可以被表示為 w =2 ( H −h ) 

tan(u/2)。其中 u 是 V 形的角度。代入式 (13-92) 中並作積分，

會得到給三角形堰的理想流率為
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 V
#
ideal, tri 5

8

15
 tanau

2
b"2gH 5/2 (13–97)

where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#
5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H � 0.2 m and
45� �  �  � 120�), the value of the weir discharge coefficient is about
Cwd, tri � 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 
bump at the bottom of the channel. If the flow depth is 0.80 m and the 
velocity is 1.2 m/s before the bump, determine if the water surface is 
depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 
It will be determined if the water surface is depressed over the bump.
Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 
there is no dissipation of mechanical energy. 3 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The upstream Froude number and the critical depth are

 Fr1 5
V1

"gy1

5
1.2 m/s

"(9.81 m2/s)(0.80 m)
5 0.428

yc 5 a 
V
#
2

gb2b
1/3

5 a(by1V1)
2

gb2 b
1/3

5 ay2
1V 

2
1

g
b

1/3

5 a(0.8 m)2(1.2 m/s)2

9.81 m/s2 b
1/3

5 0.455 m

The flow is subcritical since Fr � 1 and therefore the flow depth decreases 
over the bump. The upstream specific energy is

Es1 5 y1 1
V 2

1

2g
5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from

y3
2 2 (Es1 2 Dzb)y

2
2 1

V 
2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0

EsEs1Es2

y2
2

1
y1

y

�zb

V1 � 1.2 m/s

y1 � 0.80 m y2
�zb � 0.15 m

FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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 (13-97)

其中我們再次忽略上游的速度水頭。摩擦與其它耗散效應也再一次將理想的流率乘

以一個堰排水係數來方便地加以考慮。因此一個三角形銳緣堰的流率變成

三角形銳緣堰： 

769
CHAPTER 13

 V
#
ideal, tri 5

8

15
 tanau

2
b"2gH 5/2 (13–97)

where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#
5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H � 0.2 m and
45� �  �  � 120�), the value of the weir discharge coefficient is about
Cwd, tri � 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 
bump at the bottom of the channel. If the flow depth is 0.80 m and the 
velocity is 1.2 m/s before the bump, determine if the water surface is 
depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 
It will be determined if the water surface is depressed over the bump.
Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 
there is no dissipation of mechanical energy. 3 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The upstream Froude number and the critical depth are

 Fr1 5
V1

"gy1

5
1.2 m/s

"(9.81 m2/s)(0.80 m)
5 0.428

yc 5 a 
V
#
2

gb2b
1/3

5 a(by1V1)
2

gb2 b
1/3

5 ay2
1V 

2
1

g
b

1/3

5 a(0.8 m)2(1.2 m/s)2

9.81 m/s2 b
1/3

5 0.455 m

The flow is subcritical since Fr � 1 and therefore the flow depth decreases 
over the bump. The upstream specific energy is

Es1 5 y1 1
V 2

1

2g
5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from

y3
2 2 (Es1 2 Dzb)y

2
2 1

V 
2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0

EsEs1Es2

y2
2

1
y1

y

�zb

V1 � 1.2 m/s

y1 � 0.80 m y2
�zb � 0.15 m

FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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 (13-98)

其中 Cwd, tri 的值一般是介於 0.58 到 0.62 之間。因此流體摩擦、流動面積收縮與其

它耗散效應導致 V 形堰的流率相對於理想情況約減小了 40%。在許多實際的情況 

(H>0.2 m 且 45°<u <120°)，堰的排水係數的值約 Cwd, tri =0.58。更精確的值在文

獻中可以找到。

圖 13-52　一個三角形 (或 V 形) 銳
緣堰的幾何。視角是從下游看向上

游。
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at the bottom). As a result, the flow height over the weir is considerably 
smaller than H. When the drawdown and contraction effects are disregarded 
for simplicity, the flow rate is obtained by integrating the product of the 
flow velocity and the differential flow area over the entire flow area,

 V
#
5 #

Ac

 u2 dAc2 5 #
H

h50
 "2gh 1 V 

2
1 w dh (13–92)

where w is the width of the flow area at distance h from the upstream free 
surface.
 In general, w is a function of h. But for a rectangular weir, w � b, which 
is constant. Then the integration can be performed easily, and the flow rate 
for a rectangular weir for idealized flow with negligible friction and negli-
gible drawdown and contraction effects is determined to be

 V
#
ideal 5

2

3
 b"2g c aH 1

V  
2
1

2g
b

3/2

2 aV  
2
1

2g
b

3/2

d  (13–93)

When the weir height is large relative to the weir head (Pw �� H), the 
upstream velocity V1 is low and the upstream velocity head can be neglected. 
That is, V 1

2/2g �� H. Then,

 V
#
ideal, rec >

2

3
 b"2gH3/2 (13–94)

Therefore, the flow rate can be determined from knowledge of two geometric 
quantities: the crest width b and the weir head H, which is the vertical dis-
tance between the weir crest and the upstream free surface.
 This simplified analysis gives the general form of the flow-rate relation, 
but it needs to be modified to account for the frictional and surface tension 
effects, which play a secondary role, as well as the drawdown and contrac-
tion effects. Again this is done by multiplying the ideal flow-rate relations by 
an experimentally determined weir discharge coefficient Cwd. Then the flow 
rate for a sharp-crested rectangular weir is expressed as

Sharp-crested rectangular weir: V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2 (13–95)

where, from Ref. 1 (Ackers, 1978),

 Cwd, rec 5 0.598 1 0.0897
H

Pw

  for  
H

Pw

# 2 (13–96)

This formula is applicable over a wide range of upstream Reynolds number 
defined as Re � V1H/�. More precise but also more complex correlations 
are also available in the literature. Note that Eq. 13–95 is valid for full-width 
rectangular weirs. If the width of the weir is less than the channel width so 
that the flow is forced to contract, an additional coefficient for contraction 
correction should be incorporated to properly account for this effect.
 Another type of sharp-crested weir commonly used for flow measurement 
is the triangular weir (also called the V-notch weir) shown in Fig. 13–52. 
The triangular weir has the advantage that it maintains a high weir head H 
even for small flow rates because of the decreasing flow area with decreasing H, 
and thus it can be used to measure a wide range of flow rates accurately.
 From geometric consideration, the notch width can be expressed as 
w � 2(H � h) tan(�/2), where � is the V-notch angle. Substituting into 
Eq. 13–92 and performing the integration give the ideal flow rate for a 
triangular weir to be

�
H

w h

Pw

FIGURE 13–52
A triangular (or V-notch) sharp-crested 
weir plate geometry. The view is from 
downstream looking upstream.
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上游自由表面

堰板

 例題 13-10　　流過凸起的次臨界流

在一個寬的水平明渠中的水流碰到在渠道底面的一個 15 cm 高的凸起物。如果在凸起之前的流動深

度是 0.80 m 且速度是 1.2 m/s，試決定凸起上的水面是否凹下了 (圖 13-53)。若是如此，凹下多少？

解答：在一個水平明渠中的水流遇到一個凸起。要決定凸起上的水面是否凹下。

假設：1. 流動是穩定的。2. 忽略摩擦效應，所以沒有機械能的耗散。3. 渠道足夠寬所以沒有邊際效

應。

解析：上游福勞數與臨界深度為
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 V
#
ideal, tri 5

8

15
 tanau

2
b"2gH 5/2 (13–97)

where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#
5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H � 0.2 m and
45� �  �  � 120�), the value of the weir discharge coefficient is about
Cwd, tri � 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 
bump at the bottom of the channel. If the flow depth is 0.80 m and the 
velocity is 1.2 m/s before the bump, determine if the water surface is 
depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 
It will be determined if the water surface is depressed over the bump.
Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 
there is no dissipation of mechanical energy. 3 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The upstream Froude number and the critical depth are

 Fr1 5
V1

"gy1

5
1.2 m/s

"(9.81 m2/s)(0.80 m)
5 0.428

yc 5 a 
V
#
2

gb2b
1/3

5 a(by1V1)
2

gb2 b
1/3

5 ay2
1V 

2
1

g
b

1/3

5 a(0.8 m)2(1.2 m/s)2

9.81 m/s2 b
1/3

5 0.455 m

The flow is subcritical since Fr � 1 and therefore the flow depth decreases 
over the bump. The upstream specific energy is

Es1 5 y1 1
V 2

1

2g
5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from

y3
2 2 (Es1 2 Dzb)y

2
2 1

V 
2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0

EsEs1Es2

y2
2

1
y1

y

�zb

V1 � 1.2 m/s

y1 � 0.80 m y2
�zb � 0.15 m

FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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因為 Fr <1，流動是次臨界的，因此在凸起上的流動深度減小。

上游比能量為

769
CHAPTER 13

 V
#
ideal, tri 5

8

15
 tanau

2
b"2gH 5/2 (13–97)

where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#
5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H � 0.2 m and
45� �  �  � 120�), the value of the weir discharge coefficient is about
Cwd, tri � 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 
bump at the bottom of the channel. If the flow depth is 0.80 m and the 
velocity is 1.2 m/s before the bump, determine if the water surface is 
depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 
It will be determined if the water surface is depressed over the bump.
Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 
there is no dissipation of mechanical energy. 3 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The upstream Froude number and the critical depth are

 Fr1 5
V1

"gy1

5
1.2 m/s

"(9.81 m2/s)(0.80 m)
5 0.428

yc 5 a 
V
#
2

gb2b
1/3

5 a(by1V1)
2

gb2 b
1/3

5 ay2
1V 

2
1

g
b

1/3

5 a(0.8 m)2(1.2 m/s)2

9.81 m/s2 b
1/3

5 0.455 m

The flow is subcritical since Fr � 1 and therefore the flow depth decreases 
over the bump. The upstream specific energy is

Es1 5 y1 1
V 2

1

2g
5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from

y3
2 2 (Es1 2 Dzb)y

2
2 1

V 
2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0

EsEs1Es2

y2
2

1
y1

y

�zb

V1 � 1.2 m/s

y1 � 0.80 m y2
�zb � 0.15 m

FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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凸起上的流動深度如下決定
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where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#
5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H � 0.2 m and
45� �  �  � 120�), the value of the weir discharge coefficient is about
Cwd, tri � 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 
bump at the bottom of the channel. If the flow depth is 0.80 m and the 
velocity is 1.2 m/s before the bump, determine if the water surface is 
depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 
It will be determined if the water surface is depressed over the bump.
Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 
there is no dissipation of mechanical energy. 3 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The upstream Froude number and the critical depth are

 Fr1 5
V1

"gy1

5
1.2 m/s

"(9.81 m2/s)(0.80 m)
5 0.428

yc 5 a 
V
#
2

gb2b
1/3

5 a(by1V1)
2

gb2 b
1/3

5 ay2
1V 

2
1

g
b

1/3

5 a(0.8 m)2(1.2 m/s)2

9.81 m/s2 b
1/3

5 0.455 m

The flow is subcritical since Fr � 1 and therefore the flow depth decreases 
over the bump. The upstream specific energy is

Es1 5 y1 1
V 2

1

2g
5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from

y3
2 2 (Es1 2 Dzb)y

2
2 1

V 
2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0

EsEs1Es2

y2
2

1
y1

y

�zb

V1 � 1.2 m/s

y1 � 0.80 m y2
�zb � 0.15 m

FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#
5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H � 0.2 m and
45� �  �  � 120�), the value of the weir discharge coefficient is about
Cwd, tri � 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 
bump at the bottom of the channel. If the flow depth is 0.80 m and the 
velocity is 1.2 m/s before the bump, determine if the water surface is 
depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 
It will be determined if the water surface is depressed over the bump.
Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 
there is no dissipation of mechanical energy. 3 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The upstream Froude number and the critical depth are

 Fr1 5
V1

"gy1

5
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"(9.81 m2/s)(0.80 m)
5 0.428

yc 5 a 
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5 a(by1V1)
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5 ay2
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b
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5 a(0.8 m)2(1.2 m/s)2

9.81 m/s2 b
1/3

5 0.455 m

The flow is subcritical since Fr � 1 and therefore the flow depth decreases 
over the bump. The upstream specific energy is

Es1 5 y1 1
V 2

1

2g
5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from

y3
2 2 (Es1 2 Dzb)y

2
2 1

V 
2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0

EsEs1Es2

y2
2

1
y1

y

�zb

V1 � 1.2 m/s

y1 � 0.80 m y2
�zb � 0.15 m

FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#
5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H � 0.2 m and
45� �  �  � 120�), the value of the weir discharge coefficient is about
Cwd, tri � 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 
bump at the bottom of the channel. If the flow depth is 0.80 m and the 
velocity is 1.2 m/s before the bump, determine if the water surface is 
depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 
It will be determined if the water surface is depressed over the bump.
Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 
there is no dissipation of mechanical energy. 3 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The upstream Froude number and the critical depth are
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"gy1
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The flow is subcritical since Fr � 1 and therefore the flow depth decreases 
over the bump. The upstream specific energy is
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5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from
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2 2 (Es1 2 Dzb)y
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2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0
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FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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使用一個方程式求解器，此方程式的三個根被決定為 0.59 m、

0.36 m 與 –0.22 m。

　　我們捨棄負值解，因其為物理不可能的。我們也去除 0.36 m 的解，因其小於臨界深度，只能發

生在超臨界流中，突起上的深度的唯一有意義的解是 y2 =0.59 m。因此突起上的水面與渠道底面的

距離是∆zb +y2 =0.15+0.59=0.74 m，此值小於 y1 =0.80 m。凸起上水面的凹下量為

凹下量=y1 − (y2 +∆zb)=0.80 m− (0.59+0.15)=0.06 m

討論：注意雖然 y2 <y1，但並不一定指示水面是凹下的 (它有可能在凸起上是隆起的)。只有當 y1 −
y2 的差值大於凸起高度 ∆zb，凸起上的水面才是凹下的。同時，凹下的實際值可能不同於 0.06 m，

因為此分析中忽略了摩擦效應。

圖 13-53　例題 13-10 的示意圖與流
動深度–比能量圖。
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where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#
5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H � 0.2 m and
45� �  �  � 120�), the value of the weir discharge coefficient is about
Cwd, tri � 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 
bump at the bottom of the channel. If the flow depth is 0.80 m and the 
velocity is 1.2 m/s before the bump, determine if the water surface is 
depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 
It will be determined if the water surface is depressed over the bump.
Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 
there is no dissipation of mechanical energy. 3 The channel is sufficiently 
wide so that the end effects are negligible.
Analysis  The upstream Froude number and the critical depth are

 Fr1 5
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"gy1
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The flow is subcritical since Fr � 1 and therefore the flow depth decreases 
over the bump. The upstream specific energy is
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5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from

y3
2 2 (Es1 2 Dzb)y

2
2 1

V 
2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0

EsEs1Es2
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V1 � 1.2 m/s

y1 � 0.80 m y2
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FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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凸起物上方的
凹下

凸起物

次臨界流

 例題 13-11　　用堰量測流率

在一個 5 m 寬的水平明渠中的水流率要用一個等寬度、高度 0.60 

m 的銳緣矩形堰來量測。如果上游的水深為 1.5 m，試決定水的流

率 (圖 13-54)。

解答：一個具有銳緣矩形堰的水平明渠的上游水深被量測到，要

決定流率。

圖 13-54　例題 13-11 的示意圖。
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Using an equation solver, the three roots of this equation are determined 
to be 0.59 m, 0.36 m, and �0.22 m. We discard the negative solution as 
physically impossible. We also eliminate the solution 0.36 m since it is less 
than the critical depth, and it can occur only in supercritical flow. Thus the 
only meaningful solution for flow depth over the bump is y2 � 0.59 m. Then 
the distance of the water surface over the bump from the channel bottom is 
�zb � y2 � 0.15 � 0.59 � 0.74 m, which is less than y1 � 0.80 m. There-
fore, the water surface is depressed over the bump in the amount of

Depression 5 y1 2 (
 
y2 1 Dzb) 5 0.80 2 (0.59 1 0.15) 5 0.06 m

Discussion  Note that having y2 � y1 does not necessarily indicate that the 
water surface is depressed (it may still rise over the bump). The surface is 
depressed over the bump only when the difference y1 � y2 is larger than 
the bump height �zb. Also, the actual value of depression may be differ-
ent than 0.06 m because of the frictional effects that are neglected in the 
analysis.

EXAMPLE 13–11    Measuring Flow Rate by a Weir

The flow rate of water in a 5-m-wide horizontal open channel is being mea-
sured with a 0.60-m-high sharp-crested rectangular weir of equal width. If the 
water depth upstream is 1.5 m, determine the flow rate of water (Fig. 13–54).

SOLUTION  The water depth upstream of a horizontal open channel equip-
ped with a sharp-crested rectangular weir is measured. The flow rate is to be 
determined.
Assumptions  1 The flow is steady. 2 The upstream velocity head is negligi-
ble. 3 The channel is sufficiently wide so that the end effects are negligible.
Analysis  The weir head is

H 5 y1 2 Pw 5 1.5 2 0.60 5 0.90 m

The discharge coefficient of the weir is

Cwd, rec 5 0.598 1 0.0897 
H

Pw

5 0.598 1 0.0897 
0.90

0.60
5 0.733

The condition H/Pw � 2 is satisfied since 0.9/0.6 � 1.5. Then the water 
flow rate through the channel becomes

 V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2

 5 (0.733) 
2

3
 (5 m)"2(9.81 m/s2)(0.90 m)3/2

 5 9.24 m3/s

Discussion  The upstream velocity and the upstream velocity head are

V1 5
V
#

by1

5
9.24 m3/s

(5 m)(1.5 m)
5 1.23 m/s  and  

V 2
1

2g
5

(1.23 m/s)2

2(9.81 m/s2)
5 0.077 m

This is 8.6 percent of the weir head, which is significant. When the upstream 
velocity head is considered, the flow rate becomes 10.2 m3/s, which is about 
10 percent higher than the value determined. Therefore, it is good practice 
to consider the upstream velocity head unless the weir height Pw is very large 
relative to the weir head H.

V1

y1 � 1.5 m

Pw � 0.60 m

b � 5 m

FIGURE 13–54
Schematic for Example 13–11.
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矩形銳緣堰
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訪問作者：Peggy A. Johnson，賓州州立大學

橋梁挖蝕是美國橋梁損壞最常見的原因 (Wardhana and 

Hadipriono, 2003)。橋梁挖蝕是溪流或河流中在一座橋梁附近

的河道的侵蝕，包括橋墩與橋座周圍的侵蝕與對整個河床的

侵蝕與降低。橋梁基礎附近的侵蝕已經是美國的水道中近乎 

400,000 座橋梁損壞的主要因素。一些最近的損壞案例，可能

是由在河流中橋梁附近的高流量所造成的，這說明了問題的嚴

重性。在 1993 年發生在上密西西比與下密蘇里的河流盆地的

洪水中，28 座橋梁損壞中至少有 22 座是由於挖蝕，造成至少 

800 萬美元的損害成本 (Kamojjala et al., 1994)。在 2010 年發生

在田納西州的“超級洪水”期間至少 30 個郡被發佈為主要災

區，田納西河的洪水造成 587 座橋梁的挖蝕與堤岸侵蝕，並導

致多於 50 座橋梁被關閉。在 2011 年的秋天，在中大西洋與美國東北部的颶風艾琳 (Irene) 與熱帶

風暴李 (Lee) 造成洪水氾濫，並由於挖蝕導致許多橋梁的損壞與受損。

橋墩挖蝕的機制已經在實驗室中並用電腦模型加以研究。主要機制被認為是由於在洪水期間

橋墩所造成的“馬蹄形”渦旋造成的逆向壓力梯度驅動一部分的來流在橋墩之間向下流動所致 

應用聚焦燈－橋梁挖蝕

圖 13-55　聖地牙哥附近的一座橋墩
在河道中水流強大時所發展出來的

挖蝕凹洞。
Photo by Peggy Johnson, Penn State,
used by permission.
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Bridge scour is the most common cause of bridge failure in the United States 
(Wardhana and Hadipriono, 2003). Bridge scour is the erosion of a stream 
or river channel bed in the vicinity of a bridge, including erosion around the 
bridge piers and abutments as well as the erosion and lowering of the entire 
channel bed. Scour around bridge foundations has been a leading cause of 
bridge failure for the nearly 400,000 bridges over waterways in the United 
States. A few recent examples of the damage that can be caused by high 
flows in rivers at bridges illustrate the magnitude of the problem. During the 
1993 flood in the upper Mississippi and lower Missouri river basins, at least 
22 of the 28 bridge failures were due to scour, at an estimated cost of more 
than $8 million (Kamojjala et al., 1994). During the “Super Flood” in Ten-
nessee in 2010 in which more than 30 counties were declared major disaster 
areas, flooding in Tennessee’s rivers caused scour and embankment erosion 
at 587 bridges and resulted in the closure of more than 50 bridges. In the 
fall of 2011, Hurricane Irene and Tropical Storm Lee in the mid-Atlantic 
and northeast U.S. caused flooding in rivers that resulted in numerous bridge 
failures and damage to bridges due to scour.
 The mechanics of scour at bridge piers has been studied in laboratories 
and computer models. The primary mechanism is thought to be due to a 
“horseshoe” vortex that forms during floods as an adverse pressure gradi-
ent caused by the pier drives a portion of the approach flow downward just 
ahead of the pier (Arneson et al, 2012). The rate of erosion of the scour hole 
is directly associated with the magnitude of the downflow, which is directly 
related to the velocity of the approaching river flow. The strong vortex lifts 
the sediment out of the hole and deposits it downstream in the wake vor-
tex. The result is a deep hole upstream of the bridge pier that can cause the 
bridge foundation to become unstable.
 Protecting bridge piers over rivers and streams against the damaging flood-
waters remains a major challenge for states across the country. Flood flows in 
channels have enormous capacity to move sediment and rock; thus, traditional 
protection, such as riprap, is often not sufficient. There has been considerable 
research on the use of vanes and similar structures in the river channel to help 
direct the flow around the bridge piers and abutments and provide a smoother 
transition of the flow through the bridge opening (Johnson et al, 2010).
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APPLICATION SPOTLIGHT ■ Bridge Scour

FIGURE 13–55
A scour hole developed around this 

bridge pier near San Diego during 
high flows in the river channel.

Photo by Peggy Johnson, Penn State, 
used by permission.

FIGURE 13–56
Scour that developed around the bridge 

foundation during a 50 year flood in 
1996 caused this bridge to fail in 

central PA. A temporary metal bridge 
was placed across the opening while a 

new bridge was being designed.
Photo by Peggy Johnson, Penn State, 

used by permission.
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假設：1. 流動是穩定的。2. 忽略上游的速度水頭。3. 渠道夠寬可以忽略邊際效應。

解析：堰水頭是

H=y1 −Pw =1.5−0.60=0.90 m

堰的排水係數是
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Using an equation solver, the three roots of this equation are determined 
to be 0.59 m, 0.36 m, and �0.22 m. We discard the negative solution as 
physically impossible. We also eliminate the solution 0.36 m since it is less 
than the critical depth, and it can occur only in supercritical flow. Thus the 
only meaningful solution for flow depth over the bump is y2 � 0.59 m. Then 
the distance of the water surface over the bump from the channel bottom is 
�zb � y2 � 0.15 � 0.59 � 0.74 m, which is less than y1 � 0.80 m. There-
fore, the water surface is depressed over the bump in the amount of

Depression 5 y1 2 (
 
y2 1 Dzb) 5 0.80 2 (0.59 1 0.15) 5 0.06 m

Discussion  Note that having y2 � y1 does not necessarily indicate that the 
water surface is depressed (it may still rise over the bump). The surface is 
depressed over the bump only when the difference y1 � y2 is larger than 
the bump height �zb. Also, the actual value of depression may be differ-
ent than 0.06 m because of the frictional effects that are neglected in the 
analysis.

EXAMPLE 13–11    Measuring Flow Rate by a Weir

The flow rate of water in a 5-m-wide horizontal open channel is being mea-
sured with a 0.60-m-high sharp-crested rectangular weir of equal width. If the 
water depth upstream is 1.5 m, determine the flow rate of water (Fig. 13–54).

SOLUTION  The water depth upstream of a horizontal open channel equip-
ped with a sharp-crested rectangular weir is measured. The flow rate is to be 
determined.
Assumptions  1 The flow is steady. 2 The upstream velocity head is negligi-
ble. 3 The channel is sufficiently wide so that the end effects are negligible.
Analysis  The weir head is

H 5 y1 2 Pw 5 1.5 2 0.60 5 0.90 m

The discharge coefficient of the weir is

Cwd, rec 5 0.598 1 0.0897 
H

Pw

5 0.598 1 0.0897 
0.90

0.60
5 0.733

The condition H/Pw � 2 is satisfied since 0.9/0.6 � 1.5. Then the water 
flow rate through the channel becomes

 V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2

 5 (0.733) 
2

3
 (5 m)"2(9.81 m/s2)(0.90 m)3/2

 5 9.24 m3/s

Discussion  The upstream velocity and the upstream velocity head are

V1 5
V
#

by1

5
9.24 m3/s

(5 m)(1.5 m)
5 1.23 m/s  and  

V 2
1

2g
5

(1.23 m/s)2

2(9.81 m/s2)
5 0.077 m

This is 8.6 percent of the weir head, which is significant. When the upstream 
velocity head is considered, the flow rate becomes 10.2 m3/s, which is about 
10 percent higher than the value determined. Therefore, it is good practice 
to consider the upstream velocity head unless the weir height Pw is very large 
relative to the weir head H.

V1

y1 � 1.5 m

Pw � 0.60 m

b � 5 m

FIGURE 13–54
Schematic for Example 13–11.
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Using an equation solver, the three roots of this equation are determined 
to be 0.59 m, 0.36 m, and �0.22 m. We discard the negative solution as 
physically impossible. We also eliminate the solution 0.36 m since it is less 
than the critical depth, and it can occur only in supercritical flow. Thus the 
only meaningful solution for flow depth over the bump is y2 � 0.59 m. Then 
the distance of the water surface over the bump from the channel bottom is 
�zb � y2 � 0.15 � 0.59 � 0.74 m, which is less than y1 � 0.80 m. There-
fore, the water surface is depressed over the bump in the amount of

Depression 5 y1 2 (
 
y2 1 Dzb) 5 0.80 2 (0.59 1 0.15) 5 0.06 m

Discussion  Note that having y2 � y1 does not necessarily indicate that the 
water surface is depressed (it may still rise over the bump). The surface is 
depressed over the bump only when the difference y1 � y2 is larger than 
the bump height �zb. Also, the actual value of depression may be differ-
ent than 0.06 m because of the frictional effects that are neglected in the 
analysis.

EXAMPLE 13–11    Measuring Flow Rate by a Weir

The flow rate of water in a 5-m-wide horizontal open channel is being mea-
sured with a 0.60-m-high sharp-crested rectangular weir of equal width. If the 
water depth upstream is 1.5 m, determine the flow rate of water (Fig. 13–54).

SOLUTION  The water depth upstream of a horizontal open channel equip-
ped with a sharp-crested rectangular weir is measured. The flow rate is to be 
determined.
Assumptions  1 The flow is steady. 2 The upstream velocity head is negligi-
ble. 3 The channel is sufficiently wide so that the end effects are negligible.
Analysis  The weir head is

H 5 y1 2 Pw 5 1.5 2 0.60 5 0.90 m

The discharge coefficient of the weir is

Cwd, rec 5 0.598 1 0.0897 
H

Pw

5 0.598 1 0.0897 
0.90

0.60
5 0.733

The condition H/Pw � 2 is satisfied since 0.9/0.6 � 1.5. Then the water 
flow rate through the channel becomes

 V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2

 5 (0.733) 
2

3
 (5 m)"2(9.81 m/s2)(0.90 m)3/2

 5 9.24 m3/s

Discussion  The upstream velocity and the upstream velocity head are

V1 5
V
#

by1

5
9.24 m3/s

(5 m)(1.5 m)
5 1.23 m/s  and  

V 2
1

2g
5

(1.23 m/s)2

2(9.81 m/s2)
5 0.077 m

This is 8.6 percent of the weir head, which is significant. When the upstream 
velocity head is considered, the flow rate becomes 10.2 m3/s, which is about 
10 percent higher than the value determined. Therefore, it is good practice 
to consider the upstream velocity head unless the weir height Pw is very large 
relative to the weir head H.

V1

y1 � 1.5 m

Pw � 0.60 m

b � 5 m

FIGURE 13–54
Schematic for Example 13–11.
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Using an equation solver, the three roots of this equation are determined 
to be 0.59 m, 0.36 m, and �0.22 m. We discard the negative solution as 
physically impossible. We also eliminate the solution 0.36 m since it is less 
than the critical depth, and it can occur only in supercritical flow. Thus the 
only meaningful solution for flow depth over the bump is y2 � 0.59 m. Then 
the distance of the water surface over the bump from the channel bottom is 
�zb � y2 � 0.15 � 0.59 � 0.74 m, which is less than y1 � 0.80 m. There-
fore, the water surface is depressed over the bump in the amount of

Depression 5 y1 2 (
 
y2 1 Dzb) 5 0.80 2 (0.59 1 0.15) 5 0.06 m

Discussion  Note that having y2 � y1 does not necessarily indicate that the 
water surface is depressed (it may still rise over the bump). The surface is 
depressed over the bump only when the difference y1 � y2 is larger than 
the bump height �zb. Also, the actual value of depression may be differ-
ent than 0.06 m because of the frictional effects that are neglected in the 
analysis.

EXAMPLE 13–11    Measuring Flow Rate by a Weir

The flow rate of water in a 5-m-wide horizontal open channel is being mea-
sured with a 0.60-m-high sharp-crested rectangular weir of equal width. If the 
water depth upstream is 1.5 m, determine the flow rate of water (Fig. 13–54).

SOLUTION  The water depth upstream of a horizontal open channel equip-
ped with a sharp-crested rectangular weir is measured. The flow rate is to be 
determined.
Assumptions  1 The flow is steady. 2 The upstream velocity head is negligi-
ble. 3 The channel is sufficiently wide so that the end effects are negligible.
Analysis  The weir head is

H 5 y1 2 Pw 5 1.5 2 0.60 5 0.90 m

The discharge coefficient of the weir is

Cwd, rec 5 0.598 1 0.0897 
H

Pw

5 0.598 1 0.0897 
0.90

0.60
5 0.733

The condition H/Pw � 2 is satisfied since 0.9/0.6 � 1.5. Then the water 
flow rate through the channel becomes

 V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2

 5 (0.733) 
2

3
 (5 m)"2(9.81 m/s2)(0.90 m)3/2

 5 9.24 m3/s

Discussion  The upstream velocity and the upstream velocity head are

V1 5
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(5 m)(1.5 m)
5 1.23 m/s  and  

V 2
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2g
5

(1.23 m/s)2

2(9.81 m/s2)
5 0.077 m

This is 8.6 percent of the weir head, which is significant. When the upstream 
velocity head is considered, the flow rate becomes 10.2 m3/s, which is about 
10 percent higher than the value determined. Therefore, it is good practice 
to consider the upstream velocity head unless the weir height Pw is very large 
relative to the weir head H.

V1

y1 � 1.5 m

Pw � 0.60 m

b � 5 m

FIGURE 13–54
Schematic for Example 13–11.
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Using an equation solver, the three roots of this equation are determined 
to be 0.59 m, 0.36 m, and �0.22 m. We discard the negative solution as 
physically impossible. We also eliminate the solution 0.36 m since it is less 
than the critical depth, and it can occur only in supercritical flow. Thus the 
only meaningful solution for flow depth over the bump is y2 � 0.59 m. Then 
the distance of the water surface over the bump from the channel bottom is 
�zb � y2 � 0.15 � 0.59 � 0.74 m, which is less than y1 � 0.80 m. There-
fore, the water surface is depressed over the bump in the amount of
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Discussion  Note that having y2 � y1 does not necessarily indicate that the 
water surface is depressed (it may still rise over the bump). The surface is 
depressed over the bump only when the difference y1 � y2 is larger than 
the bump height �zb. Also, the actual value of depression may be differ-
ent than 0.06 m because of the frictional effects that are neglected in the 
analysis.

EXAMPLE 13–11    Measuring Flow Rate by a Weir

The flow rate of water in a 5-m-wide horizontal open channel is being mea-
sured with a 0.60-m-high sharp-crested rectangular weir of equal width. If the 
water depth upstream is 1.5 m, determine the flow rate of water (Fig. 13–54).

SOLUTION  The water depth upstream of a horizontal open channel equip-
ped with a sharp-crested rectangular weir is measured. The flow rate is to be 
determined.
Assumptions  1 The flow is steady. 2 The upstream velocity head is negligi-
ble. 3 The channel is sufficiently wide so that the end effects are negligible.
Analysis  The weir head is

H 5 y1 2 Pw 5 1.5 2 0.60 5 0.90 m

The discharge coefficient of the weir is

Cwd, rec 5 0.598 1 0.0897 
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The condition H/Pw � 2 is satisfied since 0.9/0.6 � 1.5. Then the water 
flow rate through the channel becomes
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This is 8.6 percent of the weir head, which is significant. When the upstream 
velocity head is considered, the flow rate becomes 10.2 m3/s, which is about 
10 percent higher than the value determined. Therefore, it is good practice 
to consider the upstream velocity head unless the weir height Pw is very large 
relative to the weir head H.

V1

y1 � 1.5 m

Pw � 0.60 m

b � 5 m

FIGURE 13–54
Schematic for Example 13–11.
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這是堰水頭的 8.6%，其影響是顯著的。當考慮上游速度水頭時，流率變成 10.2 m3/s，這比求得的

值高約 10%。因此考慮上游速度水頭是好的作法，除非堰高度 Pw 相對於堰水頭 H 是非常大時。
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(Arneson et al., 2012)。挖蝕洞的侵蝕率直接與向下流的強度大

小有關，而這是與河川來流的速度直接有關的。強烈的渦旋將

沉澱物從凹洞中舉起，並沉積在下游的尾流渦旋中。結果形成

在橋墩上游很深的凹洞，可導致橋梁基礎變得不穩定。

保護河川中的橋墩對抗洪水的損害仍然是全美各州主要的

挑戰。渠道中的洪水力量強大足以搬動沉積物與岩石；傳統的

保護法，例如消波塊，通常並不足夠。有很多研究使用導葉

及類似的結構，在河流的流道中來幫助引導水流繞過橋墩與橋

座，並提供平滑的轉向，使水流很順地流過橋的開口 (Johnson 

et al., 2010)。
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圖 13-56　賓州中部的一座橋梁。 
1996 年的一次 50 年洪水在橋的基礎
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設計期間，一座暫時的金屬橋被放

置在這個開口上。
Photo by Peggy Johnson, Penn State,
used by permission.

771
CHAPTER 13

Guest Author: Peggy A. Johnson, 
Penn State University

Bridge scour is the most common cause of bridge failure in the United States 
(Wardhana and Hadipriono, 2003). Bridge scour is the erosion of a stream 
or river channel bed in the vicinity of a bridge, including erosion around the 
bridge piers and abutments as well as the erosion and lowering of the entire 
channel bed. Scour around bridge foundations has been a leading cause of 
bridge failure for the nearly 400,000 bridges over waterways in the United 
States. A few recent examples of the damage that can be caused by high 
flows in rivers at bridges illustrate the magnitude of the problem. During the 
1993 flood in the upper Mississippi and lower Missouri river basins, at least 
22 of the 28 bridge failures were due to scour, at an estimated cost of more 
than $8 million (Kamojjala et al., 1994). During the “Super Flood” in Ten-
nessee in 2010 in which more than 30 counties were declared major disaster 
areas, flooding in Tennessee’s rivers caused scour and embankment erosion 
at 587 bridges and resulted in the closure of more than 50 bridges. In the 
fall of 2011, Hurricane Irene and Tropical Storm Lee in the mid-Atlantic 
and northeast U.S. caused flooding in rivers that resulted in numerous bridge 
failures and damage to bridges due to scour.
 The mechanics of scour at bridge piers has been studied in laboratories 
and computer models. The primary mechanism is thought to be due to a 
“horseshoe” vortex that forms during floods as an adverse pressure gradi-
ent caused by the pier drives a portion of the approach flow downward just 
ahead of the pier (Arneson et al, 2012). The rate of erosion of the scour hole 
is directly associated with the magnitude of the downflow, which is directly 
related to the velocity of the approaching river flow. The strong vortex lifts 
the sediment out of the hole and deposits it downstream in the wake vor-
tex. The result is a deep hole upstream of the bridge pier that can cause the 
bridge foundation to become unstable.
 Protecting bridge piers over rivers and streams against the damaging flood-
waters remains a major challenge for states across the country. Flood flows in 
channels have enormous capacity to move sediment and rock; thus, traditional 
protection, such as riprap, is often not sufficient. There has been considerable 
research on the use of vanes and similar structures in the river channel to help 
direct the flow around the bridge piers and abutments and provide a smoother 
transition of the flow through the bridge opening (Johnson et al, 2010).
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APPLICATION SPOTLIGHT ■ Bridge Scour

FIGURE 13–55
A scour hole developed around this 

bridge pier near San Diego during 
high flows in the river channel.

Photo by Peggy Johnson, Penn State, 
used by permission.

FIGURE 13–56
Scour that developed around the bridge 

foundation during a 50 year flood in 
1996 caused this bridge to fail in 

central PA. A temporary metal bridge 
was placed across the opening while a 

new bridge was being designed.
Photo by Peggy Johnson, Penn State, 

used by permission.
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明渠流指的是液體在一個對大氣開放的渠道中或在一個部分填滿的流道中的流動。如果流動

深度 (或平均速度) 維持為常數，渠道中的流動就是均勻的；否則，流動就是非均勻的或變速的。

水力半徑定義為 Rh =Ac /p。無音次福勞數定義為
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OPEN-CHANNEL FLOW

SUMMARY

Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as

Fr 5
V

"gL c

5
V

"gy

The flow is classified as subcritical for Fr � 1, critical for 
Fr � 1, and supercritical for Fr � 1. Flow depth in critical 
flow is called the critical depth and is expressed as

yc 5
V
#

 
2

gA2
c

  or  yc 5 a V
#

 
2

 gb2b
1/3

where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as

H 5 zb 1 y 1
V 

2

2g

where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,

Es 5 y 1
V 

2

2g

The conservation of mass equation is Ac1V1 � Ac2V2. The 
energy equation is expressed as

y1 1
V 

2
1

2g
1 S0L 5 y2 1

V 
2
2

2g
1 hL

Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by

V0 5
a
n

R2/3
h S1/2

0   and  V
#
5

a
n

AcR
2/3
h S 1/2

0

where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as

Sc 5
gn2yc

a2R4/3
h

  which simplifies to  Sc 5
gn2

a2y1/3
c

for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,

dy

dx
5

S0 2 Sf

1 2 Fr2

 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as

y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B

 hL 5 y1 2 y2 1
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2
1 2 V 
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2g
 

 5 y1 2 y2 1
y1Fr2
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2
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y2
1

y2
2

b 

Dissipation ratio 5
hL

Es1

5
hL

y1 1 V 
2
1/2g

 

 5
hL

y1(1 1 Fr2
1 /2)

 

 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by

V
#
5 Cdba"2gy1

where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as

V
#
5 Cwd, broadb"ga2

3
b

3/2

aH 1
V 2

1

2g
b

3/2

where the discharge coefficient is
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若 Fr <1，流動被分類為次臨界的；若 Fr =1，則被分類為臨界的；若 Fr >1，則是超臨界的。臨

界流的流動深度稱為臨界深度，並被表示為
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Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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The conservation of mass equation is Ac1V1 � Ac2V2. The 
energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
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tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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SUMMARY

Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as
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The flow is classified as subcritical for Fr � 1, critical for 
Fr � 1, and supercritical for Fr � 1. Flow depth in critical 
flow is called the critical depth and is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,

dy

dx
5

S0 2 Sf

1 2 Fr2

 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where the discharge coefficient is
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where b is the channel width for wide channels.
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
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given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
gn2

a2y1/3
c

for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
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Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as
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flow is called the critical depth and is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
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energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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gn2

a2y1/3
c

for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by

V
#
5 Cdba"2gy1

where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
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given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as

y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B

 hL 5 y1 2 y2 1
V 

2
1 2 V 

2
2

2g
 

 5 y1 2 y2 1
y1Fr2

1

2
a1 2

y2
1

y2
2

b 

Dissipation ratio 5
hL

Es1

5
hL

y1 1 V 
2
1/2g

 

 5
hL

y1(1 1 Fr2
1 /2)

 

 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by

V
#
5 Cdba"2gy1

where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where the discharge coefficient is
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SUMMARY

Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as
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The flow is classified as subcritical for Fr � 1, critical for 
Fr � 1, and supercritical for Fr � 1. Flow depth in critical 
flow is called the critical depth and is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as

H 5 zb 1 y 1
V 

2

2g

where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,

dy

dx
5
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where the discharge coefficient is
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其中 n 是曼寧係數，其值相依於渠道表面的粗糙度，而 a=1 m1/3/s= (3.2808 ft)1/3/s=1.486 ft1/3/s。

若 yn =yc，流動是均勻臨界流，且底面斜率 S0 等於臨界斜率 Sc，表示為
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SUMMARY

Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as
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The flow is classified as subcritical for Fr � 1, critical for 
Fr � 1, and supercritical for Fr � 1. Flow depth in critical 
flow is called the critical depth and is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as

H 5 zb 1 y 1
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,

Es 5 y 1
V 

2

2g

The conservation of mass equation is Ac1V1 � Ac2V2. The 
energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
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a2y1/3
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,

dy

dx
5
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where the discharge coefficient is
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其可簡化成
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Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as
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The flow is classified as subcritical for Fr � 1, critical for 
Fr � 1, and supercritical for Fr � 1. Flow depth in critical 
flow is called the critical depth and is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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The conservation of mass equation is Ac1V1 � Ac2V2. The 
energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by

V0 5
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as

Sc 5
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  which simplifies to  Sc 5
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a2y1/3
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,

dy
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where the discharge coefficient is
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這是薄層流動或在一個寬的矩形渠道 b>>yc 中的流動。

最好的水力截面是具有最大水力半徑的明渠，或是對於一個給定的截面積，有最小溼邊周長

的渠道。矩形渠道的最好水力截面的準則是 y=b/2。梯形渠道的最好截面是六角形的一半。

在漸變流中 (GVF)，流動深度隨著往下游的距離緩慢而平滑地改變。表面形狀 y(x) 是藉著積分 

GVF 方程式來計算的：
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SUMMARY

Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as
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The flow is classified as subcritical for Fr � 1, critical for 
Fr � 1, and supercritical for Fr � 1. Flow depth in critical 
flow is called the critical depth and is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as

H 5 zb 1 y 1
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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The conservation of mass equation is Ac1V1 � Ac2V2. The 
energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
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a2y1/3
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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where the discharge coefficient is
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在急變流中 (RVF)，流動深度在流動方向的一個相當短的距離有很顯著的改變。任何從超臨界

到次臨界的流動的改變是通過一個水躍發生的，這是一個高度耗散的過程。水躍過程中的深度比 

y2/y1、水頭損失與能量耗散比可以被表示為
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Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as
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The flow is classified as subcritical for Fr � 1, critical for 
Fr � 1, and supercritical for Fr � 1. Flow depth in critical 
flow is called the critical depth and is expressed as

yc 5
V
#

 
2

gA2
c

  or  yc 5 a V
#

 
2

 gb2b
1/3

where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as

H 5 zb 1 y 1
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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The conservation of mass equation is Ac1V1 � Ac2V2. The 
energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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SUMMARY

Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh � Ac/p. The dimensionless Froude number is 
defined as
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The flow is classified as subcritical for Fr � 1, critical for 
Fr � 1, and supercritical for Fr � 1. Flow depth in critical 
flow is called the critical depth and is expressed as
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where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as

H 5 zb 1 y 1
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where zb is the elevation head, P/�g � y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,
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The conservation of mass equation is Ac1V1 � Ac2V2. The 
energy equation is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
of a channel. The friction slope is defined as Sf � hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by
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where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a � 1 m1/3/s � 
(3.2808 ft)1/3/s � 1.486 ft1/3/s. If yn � yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as
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  which simplifies to  Sc 5
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for film flow or flow in a wide rectangular channel with 
b �� yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y � b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,
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 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as
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Here hL is the head loss and S0 � tan � is the bottom slope 
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
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耗散比

一個允許液體流過它的障礙物，稱為一個堰，而一個障礙物其底部具有可調整的開口來允許

液體從其底端流過的，稱為底流閘門。通過水閘門的流率被給定如下：
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tion. Any change from supercritical to subcritical flow 
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 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by
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where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
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其中 b 與 a 是閘門開口的寬度與高度，而 Cd 是排水係數，被用來考慮摩擦效應。

一個寬頂堰是一個矩形塊，其有一個水平的頂面讓臨界流可以在其上發生。其上游高於堰的

頂面的水頭高度，稱為堰水頭，H。流率被表示為
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markedly over a relatively short distance in the flow direc-
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ing, respectively, and Cd is the discharge coefficient, which 
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其中排水係數是
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The flow rate for a sharp-crested rectangular weir is 
expressed as
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For a sharp-crested triangular weir, the flow rate is given as
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where the values of Cwd,  tri typically range between 0.58 
and 0.62.
 Open-channel analysis is commonly used in the design 
of sewer systems, irrigation systems, floodways, and dams. 
Some open-channel flows are analyzed in Chap. 15 using 
computational fluid dynamics (CFD).
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Classification, Froude Number, and Wave Speed

13–1C  How does the pressure change along the free surface 
in an open-channel flow?

13–2C  Consider steady fully developed flow in an open 
channel of rectangular cross section with a constant slope of 5� 
for the bottom surface. Will the slope of the free surface also 
be 5�? Explain.

13–3C  What causes the flow in an open channel to be var-
ied (or nonuniform)? How does rapidly varied flow differ 
from gradually varied flow?

13–4C  What is the driving force for flow in an open chan-
nel? How is the flow rate in an open channel established?

13–5C  How does uniform flow differ from nonuniform 
flow in open channels? In what kind of channels is uniform 
flow observed?

13–6C  Given the average flow velocity and the flow depth, 
explain how you would determine if the flow in open chan-
nels is tranquil, critical, or rapid.

13–7C  The flow in an open channel is observed to have 
undergone a hydraulic jump. Is the flow upstream from the 
jump necessarily supercritical? Is the flow downstream from 
the jump necessarily subcritical?

13–8C  What is critical depth in open-channel flow? For a 
given average flow velocity, how is it determined?

13–9C  What is the Froude number? How is it defined? 
What is its physical significance?

13–10  A single wave is initiated in a sea by a strong jolt 
during an earthquake. Taking the average water depth to be 
2  km and the density of seawater to be 1.030 kg/m3, deter-
mine the speed of propagation of this wave.

13–11  Consider the flow of water in a wide channel. Deter-
mine the speed of a small disturbance in the flow if the flow 

PROBLEMS*

* Problems designated by a “C” are concept questions, and students 
are encouraged to answer them all. Problems with the  icon are 
solved using EES, and complete solutions together with parametric 
studies are included on the text website. Problems with the 

 icon are comprehensive in nature and are intended to be solved 
with an equation solver such as EES.
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一個銳緣矩形堰的流率被表示為
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其中 Cwd, tri 的值一般介於 0.58 與 0.62 之間。

明渠流分析一般被用來設計衛生下水道系統、灌溉系統、疏洪道與水壩。一些明渠流在第 15 

章中用計算流體力學 (CFD) 來作分析。
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有“C”題目是觀念題，學生應儘量作答。

分類、福勞數與波速

13-1C 在一個明渠流中沿著自由表面壓力是如何

變化的？

13-2C 考慮在一個明渠中的穩定完全發展流，其

截面是矩形的，底面有 5° 的常數斜率。

其自由表面的斜率是否也是  5°？解釋

之。

13-3C 什麼造成一個明渠中的流動是變速的 (或

非均勻的)？急變流與漸變流是如何區別

的？

13-4C 什麼是一個明渠中流動的驅動力？明渠中

的流率是如何建立的？

13-5C 在明渠中均勻流與非均勻流是如何區別

的？在哪一種渠道中均勻流會被觀察到？

13-6C 已知平均流速與流動速度，解釋你如何決

定明渠中的流動是平靜的、臨界的或迅速

的。

13-7C 一個明渠中的流動被觀察到經歷一個水

躍。這個水躍上游的流動是否必定是超臨

界的？這個水躍下游的流動是否必定是次

臨界的？

13-8C 什麼是明渠流中的臨界深度？對一個已知

的平均流速，它是如何決定的？

13-9C 什麼是福勞數？它是如何定義的？它的物

理意義是什麼？

13-10 海中地震中的一個強震啟動了一個單一

波浪。取平均水深為 2 km 與海水密度為 

1,030 kg/m3，試決定這個波的傳播速度。

13-11 考慮水在一個寬渠道中的流動。試決定在

流動中一個小擾動的傳播速度，如果流動

深度是 (a) 25 cm 與 (b) 80 cm。如果流體

是油，你的答案是什麼？

13-12 水在 15°C 以 1.5 m/s 的平均速度均勻地在

一個 2 m 寬的矩形渠道中流動。如果水深

是 24 cm，試決定流動是次臨界的或是超

臨界的。(Answer: 次臨界)

13-13 下大雨後，水在混凝土表面上以平均速度 

1.3 m/s 流動。若水深是 2 cm，試決定流

動是次臨界的或超臨界的。

13-14 水在 20°C 以 1.5 m/s 的平均速度在一個寬

的矩形渠道中流動。如果水深是 0.16 m，

試決定 (a) 此流動是層流還是紊流，及 

(b) 此流動是次臨界的或超臨界的。

13-15 水在 10°C 以 2.5 m/s 的平均速度在一個半

滿的 3 m 直徑的圓形渠道中流動。試決定
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水力半徑、雷諾數與流動狀態 (層流或紊

流)。

13-16 對 2 m 直徑的渠道，重做習題 13-15。

13-17 水在 20°C 以 2 m/s 的平均速度在一個部

分填滿的 3 m 直徑圓形渠道中流動。如果

最大的水深是 0.75 m，試決定水力半徑、

雷諾數與流動狀態。

圖 P13-17　

774
OPEN-CHANNEL FLOW

0.75 m

R � 1.5 m

FIGURE P13–17

depth is (a) 25 cm and (b) 80 cm. What would your answer 
be if the fluid were oil?

13–12  Water at 15�C is flowing uniformly in a 2-m-wide 
rectangular channel at an average velocity of 1.5 m/s. If the 
water depth is 24 cm, determine whether the flow is subcriti-
cal or supercritical.  Answer: subcritical

13–13  After heavy rain, water flows on a concrete surface 
at an average velocity of 1.3 m/s. If the water depth is 2 cm, 
determine whether the flow is subcritical or supercritical.

13–14  Water at 20�C is flowing uniformly in a wide rectan-
gular channel at an average velocity of 1.5 m/s. If the water 
depth is 0.16 m, determine (a) whether the flow is lami-
nar or turbulent and (b) whether the flow is subcritical or 
supercritical.

13–15  Water at 10�C flows in a 3-m-diameter circular chan-
nel half-full at an average velocity of 2.5 m/s. Determine the 
hydraulic radius, the Reynolds number, and the flow regime 
(laminar or turbulent).

13–16  Repeat Prob. 13–15 for a channel diameter of 2 m.

13–17  Water at 20�C flows in a partially full 3-m-diameter 
circular channel at an average velocity of 2 m/s. If the maxi-
mum water depth is 0.75 m, determine the hydraulic radius, 
the Reynolds number, and the flow regime.

section is equal to that of the fluid at the channel bottom of 
the same cross section. Do you agree? Explain.

13–22C  How is the total mechanical energy of a fluid dur-
ing steady one-dimensional flow through a wide rectangular 
channel expressed in terms of heads? How is it related to the 
specific energy of the fluid?

13–23C  Express the one-dimensional energy equation 
for open-channel flow between an upstream section 1 and 
downstream section 2, and explain how the head loss can be 
determined.

13–24C  For a given flow rate through an open channel, the 
variation of specific energy with flow depth is studied. One 
person claims that the specific energy of the fluid will be 
minimum when the flow is critical, but another person claims 
that the specific energy will be minimum when the flow is 
subcritical. What is your opinion?

13–25C  Consider steady supercritical flow of water through 
an open rectangular channel at a constant flow rate. Someone 
claims that the larger is the flow depth, the larger the specific 
energy of water. Do you agree? Explain.

13–26C  During steady and uniform flow through an open 
channel of rectangular cross section, a person claims that the 
specific energy of the fluid remains constant. A second per-
son claims that the specific energy decreases along the flow 
because of the frictional effects and thus head loss. With 
which person do you agree? Explain.

13–27C  How is the friction slope defined? Under what con-
ditions is it equal to the bottom slope of an open channel?

13–28  Water at 15�C flows at a depth of 0.4 m with 
an average velocity of 6 m/s in a rectangular 

channel. Determine (a) the critical depth, (b) the alternate 
depth, and (c) the minimum specific energy.

13–29  Water at 10�C flows in a 6-m-wide rectangular chan-
nel at a depth of 0.55 m and a flow rate of 12 m3/s. Determine 
(a) the critical depth, (b) whether the flow is subcritical 
or supercritical, and (c) the alternate depth.  Answers: 
(a) 0.742 m, (b) supercritical, (c) 1.03 m

13–30  Water at 18�C flows at a depth of 42 cm with an 
average velocity of 6 m/s in a wide rectangular channel. 
Determine (a) the Froude number, (b) the critical depth, 
and (c) whether the flow is subcritical or supercritical. What 
would your response be if the flow depth were 6 cm?

13–31  Repeat Prob. 13–30 for an average velocity of 3 m/s.

13–32  Water flows steadily in a 1.4-m-wide rectangular 
channel at a rate of 0.7 m3/s. If the flow depth is 0.40 m, 
determine the flow velocity and if the flow is subcritical or 
supercritical. Also determine the alternate flow depth if the 
character of flow were to change.

13–33  Water at 20�C flows at a depth of 0.4 m with an 
average velocity of 4 m/s in a rectangular channel. Determine 

Specific Energy and the Energy Equation

13–18C  Consider steady flow of water through two identi-
cal open rectangular channels at identical flow rates. If the 
flow in one channel is subcritical and in the other supercriti-
cal, can the specific energies of the water in these two chan-
nels be identical? Explain.

13–19C  How is the specific energy of a fluid flowing in an 
open channel defined in terms of heads?

13–20C  Consider steady flow of a liquid through a wide 
rectangular channel. It is claimed that the energy line of flow 
is parallel to the channel bottom when the frictional losses 
are negligible. Do you agree?

13–21C  Consider steady one-dimensional flow through 
a wide rectangular channel. Someone claims that the total 
mechanical energy of the fluid at the free surface of a cross 
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比能量與能量方程式

13-18C 考慮水以相同的流率在兩個相同的矩形明

渠中的穩定流動。如果在一個渠道中的流

動是次臨界的，而在另一個渠道中的是超

臨界的。水在這兩個渠道中的比能量可以

是相同的嗎？解釋之。

13-19C 在一個明渠中流動的流體的比能量是如何

用水頭定義的？

13-20C 考慮液體在一個寬矩形渠道中的穩定流

動。當摩擦損失被忽略時，流動的能量線

被宣稱是平行於渠道底面的。你同意嗎？

13-21C 考慮在一個寬的矩形渠道中的穩定一維流

動。有人宣稱在一個截面的自由表面上的

流體總機械能等於流體在相同截面的渠道

底面上的總能量。你同意嗎？解釋之。

13-22C 流體在一個寬矩形渠道中的穩定一維流動

中，其總機械能是如何用水頭表示的？它

與流體的比能量是如何相關的？

13-23C 在明渠流中將一維的能量方程式在上游截

面 1 與下游截面 2 之間表示出來，並解釋

如何決定水頭損失。

13-24C 對一個已知流率的明渠，研究其比能量與

流動深度的關係。一個人宣稱流體的比能

量當流動是臨界時會是最小的，但另一個

人宣稱當流動是次臨界時，比能量才是最

小的。你的意見是什麼呢？

13-25C 考慮水的穩定的超臨界流以等流率通過一

個矩形明渠，一個人宣稱水的流動深度越

大，比能量越大。你同意嗎？解釋之。

13-26C 在通過一個矩形截面的明渠的穩定且均勻

的流動中，一個人宣稱流體的比能量維持

為常數。第二個人宣稱由於摩擦效應所造

成的水頭損失，比能量沿流動方向減小。

你會同意哪一人的說明呢？解釋之。

13-27C 摩擦斜率是如何定義的？在什麼條件下，

它會等於明渠的底面斜率？

13-28 水在 15°C 以 6 m/s 的平均速度在一個水

深 0.4 m 的矩形渠道中流動。試決定 (a) 

臨界深度，(b) 替代深度，與 (c) 最小比

能量。

13-29 水在 10°C 以 12 m3/s 的流率在一個 6 m 

寬的矩形渠道中流動，其深度為 0.55 m。

試求 (a) 臨界深度，(b) 流動是次臨界或

超臨界的，與 (c) 替代深度。(Answer: (a) 

0.742 m, (b) 超臨界的, (c) 1.03 m)

13-30 水在 18°C 以 6 m/s 的平均速度在一個寬

矩形渠道中流動，水深 42 cm。試求 (a) 

福勞數，(b) 臨界深度，與 (c) 流動是次

臨界或超臨界的。若流動深度是 6 cm，

你的回答會是什麼呢？

13-31 對一個 3m/s 的平均速度，重做習題 13-

30。

13-32 水以流率 0.7 m3/s 穩定地在一個 1.4 m 寬

的矩形渠道中流動。如果流動深度是 0.40 

m，試決定流速，並決定流動是次臨界或

超臨界的。同時若流動的特性要做改變，

決定其替代深度。

13-33 水在 20°C 以 4 m/s 的平均速度及 0.4 m 的

深度在一個矩形渠道中流動。試決定水的
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比能量及流動是次臨界或超臨界的。

13-34 水以 60 m3/s 的流率在一個半滿的六角形

渠道中流動，其底部寬為 2 m。試決定 

(a) 平均速度與 (b) 流動是次臨界或超臨

界的。

13-35 對一個 30 m3/s 的流率，重做習題 13-

34。

13-36 水以 2.8 m/s 的平均速度在一個半滿的 50 

cm 直徑的鋼製渠道中流動。試決定體積

流率與流動是次臨界或超臨界的。

13-37 水以 5 m/s 的平均速度在一個 2 m 寬的矩

形渠道中流動。若流動是臨界的，試決定

水的流率。(Answer: 25.5 m3/s)

均勻流與最好的水力截面

13-38C 一個明渠中的流動什麼時候被稱為均勻

的？在什麼條件下明渠中的流動會維持是

均勻的？

13-39C 哪一個對一個明渠是較好的水力截面：有

較小的或較大的水力半徑？

13-40C 哪一個對一個明渠是最好的水力截面：

(a) 圓形，(b) 矩形，(c) 梯形，或 (d) 三角

形？

13-41C 一個有最好的水力截面的矩形明渠的流體

高度是其渠道寬度的 (a) 一半，(b) 2 倍，

(c) 相等，或 (d) 1/3。

13-42C 一個底寬度 b 的梯形渠道有最好的水力截
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寧係數 n =0.015。若由於藻類在表面生

長導致曼寧係數倍增 (n =0.030)，但流動

截面積維持為常數，則流率會 (a) 倍增，

(b) 減小為 1/ 2，(c) 維持不變，(d) 減小

一半，或 (e) 減小為 1/21/3。

13-46 水在一個半滿的 2 m 直徑的圓形渠道中均

勻地流動，渠道在坡度為 1.5 m/km 的地

表上。如果渠道是由精製混凝土建造的，

試決定水的流率。

13-47 水均勻地在一個精製混凝土建造的梯形截

面的渠道中流動，渠道底面寬度 0.8 m，

梯形角度 50°，而底面角度為 0.4°。若量

測到的流動深度為 0.52 m，試決定水經過

渠道的流率。

圖 P13-47　

CHAPTER 13
775

the specific energy of the water and whether the flow is sub-
critical or supercritical.

13–34  Water flows half-full through a hexagonal channel of 
bottom width 2 m at a rate of 60 m3/s. Determine (a) the average 
velocity and (b) whether the flow is subcritical and supercritical.

13–35  Repeat Prob. 13–34 for a flow rate of 30 m3/s.

13–36  Water flows half-full through a 50-cm-diameter steel 
channel at an average velocity of 2.8 m/s. Determine the volume 
flow rate and whether the flow is subcritical or supercritical.

13–37  Water flows through a 2-m-wide rectangular chan-
nel with an average velocity of 5 m/s. If the flow is critical, 
determine the flow rate of water.  Answer: 25.5 m3/s

Uniform Flow and Best Hydraulic Cross Sections
13–38C  When is the flow in an open channel said to be 
uniform? Under what conditions will the flow in an open 
channel remain uniform?

13–39C  Which is a better hydraulic cross section for an 
open channel: one with a small or a large hydraulic radius?

13–40C  Which is the best hydraulic cross section for an 
open channel: (a) circular, (b) rectangular, (c) trapezoidal, or 
(d ) triangular?

13–41C  The best hydraulic cross section for a rectangular 
open channel is one whose fluid height is (a) half, (b) twice, 
(c) equal to, or (d ) one-third the channel width.

13–42C  The best hydraulic cross section for a trapezoidal 
channel of base width b is one for which the length of the side 
edge of the flow section is (a) b, (b) b/2, (c) 2b, or (d) !3b.

13–43C  During uniform flow in an open channel, someone 
claims that the head loss can be determined by simply multi-
plying the bottom slope by the channel length. Can it be this 
simple? Explain.

13–44C  Consider uniform flow through a wide rectangular 
channel. If the bottom slope is increased, the flow depth will 
(a) increase, (b) decrease, or (c) remain constant.

13–45  Consider uniform flow through an open channel 
lined with bricks with a Manning coefficient of n � 0.015. 
If the Manning coefficient doubles (n � 0.030) as a result of 
some algae growth on surfaces while the flow cross section 
remains constant, the flow rate will (a) double, (b) decrease 
by a factor of !2, (c) remain unchanged, (d) decrease by 
half, or (e) decrease by a factor of 21/3.

13–46  Water flows uniformly half-full in a 2-m-diameter 
circular channel that is laid on a grade of 1.5 m/km. If the 
channel is made of finished concrete, determine the flow rate 
of the water.

13–47  Water is flowing uniformly in a finished-concrete 
channel of trapezoidal cross section with a bottom width of 

0.8 m, trapezoid angle of 50�, and a bottom angle of 0.4�. If 
the flow depth is measured to be 0.52 m, determine the flow 
rate of water through the channel.

y � 0.52 m

� � 50°

b � 0.8 m

FIGURE P13–47

2.2 m

12 m

6 m

FIGURE P13–51

13–48  A 1-m-diameter semicircular channel made of unfin-
ished concrete is to transport water to a distance of 1.5 km 
uniformly. If the flow rate is to reach 4 m3/s when the chan-
nel is full, determine the minimum elevation difference across 
the channel.

13–49  During uniform flow in open channels, the flow 
velocity and the flow rate can be determined from the 
 Manning equations expressed as V0 � (a/n)Rh

2/3S0
1/2 and V

#
 � 

(a/n)AcRh
2/3S0

1/2. What is the value and dimension of the con-
stant a in these equations in SI units? Also, explain how the 
Manning coefficient n can be determined when the friction 
factor f is known.

13–50  Show that for uniform critical flow, the general

critical slope relation Sc 5
gn2yc

a2R4/3
h

 reduces to Sc 5
gn2

a2y1/3
c

 for

film flow with b �� yc.

13–51  A trapezoidal channel with a bottom width of 6 m, 
free surface width of 12 m, and flow depth of 2.2 m dis-
charges water at a rate of 120 m3/s. If the surfaces of the 
channel are lined with asphalt (n � 0.016), determine the 
elevation drop of the channel per km.  Answer: 5.61 m

13–52  Reconsider Prob. 13–51. If the maximum flow 
height the channel can accommodate is 3.2 m, determine the 
maximum flow rate through the channel.

13–53  Consider water flow through two identical channels 
with square flow sections of 4 m � 4 m. Now the two channels 
are combined, forming a 8-m-wide channel. The flow rate 
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13-48 一個 1 m 直徑的半圓形渠道由粗製混凝土

做成，要用來均勻地輸送水經過 1.5 km。

如果渠道滿水時的流率要達到 4 m3/s，試

求經過渠道的最小高度差。

13-49 在明渠的均勻流中，流速與流率的決定可

以從曼寧方程式表示為 V0 = (a/n) Rh
2/3S0

1/2 

與 
⋅
V = (a/n) AcRh

2/3S0
1/2。在這些方程式中

常數 a 用 SI 單位表示的值和因次是什麼

呢？同時，當摩擦因子 f 已知時，解釋曼

寧係數 n 是如何決定的。

13-50 證明均勻的臨界流，對 b >> yc 的薄層流

動，一般的臨界斜率關係式 
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the specific energy of the water and whether the flow is sub-
critical or supercritical.

13–34  Water flows half-full through a hexagonal channel of 
bottom width 2 m at a rate of 60 m3/s. Determine (a) the average 
velocity and (b) whether the flow is subcritical and supercritical.

13–35  Repeat Prob. 13–34 for a flow rate of 30 m3/s.

13–36  Water flows half-full through a 50-cm-diameter steel 
channel at an average velocity of 2.8 m/s. Determine the volume 
flow rate and whether the flow is subcritical or supercritical.

13–37  Water flows through a 2-m-wide rectangular chan-
nel with an average velocity of 5 m/s. If the flow is critical, 
determine the flow rate of water.  Answer: 25.5 m3/s

Uniform Flow and Best Hydraulic Cross Sections
13–38C  When is the flow in an open channel said to be 
uniform? Under what conditions will the flow in an open 
channel remain uniform?

13–39C  Which is a better hydraulic cross section for an 
open channel: one with a small or a large hydraulic radius?

13–40C  Which is the best hydraulic cross section for an 
open channel: (a) circular, (b) rectangular, (c) trapezoidal, or 
(d ) triangular?

13–41C  The best hydraulic cross section for a rectangular 
open channel is one whose fluid height is (a) half, (b) twice, 
(c) equal to, or (d ) one-third the channel width.

13–42C  The best hydraulic cross section for a trapezoidal 
channel of base width b is one for which the length of the side 
edge of the flow section is (a) b, (b) b/2, (c) 2b, or (d) !3b.

13–43C  During uniform flow in an open channel, someone 
claims that the head loss can be determined by simply multi-
plying the bottom slope by the channel length. Can it be this 
simple? Explain.

13–44C  Consider uniform flow through a wide rectangular 
channel. If the bottom slope is increased, the flow depth will 
(a) increase, (b) decrease, or (c) remain constant.

13–45  Consider uniform flow through an open channel 
lined with bricks with a Manning coefficient of n � 0.015. 
If the Manning coefficient doubles (n � 0.030) as a result of 
some algae growth on surfaces while the flow cross section 
remains constant, the flow rate will (a) double, (b) decrease 
by a factor of !2, (c) remain unchanged, (d) decrease by 
half, or (e) decrease by a factor of 21/3.

13–46  Water flows uniformly half-full in a 2-m-diameter 
circular channel that is laid on a grade of 1.5 m/km. If the 
channel is made of finished concrete, determine the flow rate 
of the water.

13–47  Water is flowing uniformly in a finished-concrete 
channel of trapezoidal cross section with a bottom width of 

0.8 m, trapezoid angle of 50�, and a bottom angle of 0.4�. If 
the flow depth is measured to be 0.52 m, determine the flow 
rate of water through the channel.
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b � 0.8 m
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13–48  A 1-m-diameter semicircular channel made of unfin-
ished concrete is to transport water to a distance of 1.5 km 
uniformly. If the flow rate is to reach 4 m3/s when the chan-
nel is full, determine the minimum elevation difference across 
the channel.

13–49  During uniform flow in open channels, the flow 
velocity and the flow rate can be determined from the 
 Manning equations expressed as V0 � (a/n)Rh

2/3S0
1/2 and V

#
 � 

(a/n)AcRh
2/3S0

1/2. What is the value and dimension of the con-
stant a in these equations in SI units? Also, explain how the 
Manning coefficient n can be determined when the friction 
factor f is known.

13–50  Show that for uniform critical flow, the general

critical slope relation Sc 5
gn2yc

a2R4/3
h

 reduces to Sc 5
gn2

a2y1/3
c

 for

film flow with b �� yc.

13–51  A trapezoidal channel with a bottom width of 6 m, 
free surface width of 12 m, and flow depth of 2.2 m dis-
charges water at a rate of 120 m3/s. If the surfaces of the 
channel are lined with asphalt (n � 0.016), determine the 
elevation drop of the channel per km.  Answer: 5.61 m

13–52  Reconsider Prob. 13–51. If the maximum flow 
height the channel can accommodate is 3.2 m, determine the 
maximum flow rate through the channel.

13–53  Consider water flow through two identical channels 
with square flow sections of 4 m � 4 m. Now the two channels 
are combined, forming a 8-m-wide channel. The flow rate 
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the specific energy of the water and whether the flow is sub-
critical or supercritical.

13–34  Water flows half-full through a hexagonal channel of 
bottom width 2 m at a rate of 60 m3/s. Determine (a) the average 
velocity and (b) whether the flow is subcritical and supercritical.

13–35  Repeat Prob. 13–34 for a flow rate of 30 m3/s.

13–36  Water flows half-full through a 50-cm-diameter steel 
channel at an average velocity of 2.8 m/s. Determine the volume 
flow rate and whether the flow is subcritical or supercritical.

13–37  Water flows through a 2-m-wide rectangular chan-
nel with an average velocity of 5 m/s. If the flow is critical, 
determine the flow rate of water.  Answer: 25.5 m3/s

Uniform Flow and Best Hydraulic Cross Sections
13–38C  When is the flow in an open channel said to be 
uniform? Under what conditions will the flow in an open 
channel remain uniform?

13–39C  Which is a better hydraulic cross section for an 
open channel: one with a small or a large hydraulic radius?

13–40C  Which is the best hydraulic cross section for an 
open channel: (a) circular, (b) rectangular, (c) trapezoidal, or 
(d ) triangular?

13–41C  The best hydraulic cross section for a rectangular 
open channel is one whose fluid height is (a) half, (b) twice, 
(c) equal to, or (d ) one-third the channel width.

13–42C  The best hydraulic cross section for a trapezoidal 
channel of base width b is one for which the length of the side 
edge of the flow section is (a) b, (b) b/2, (c) 2b, or (d) !3b.

13–43C  During uniform flow in an open channel, someone 
claims that the head loss can be determined by simply multi-
plying the bottom slope by the channel length. Can it be this 
simple? Explain.

13–44C  Consider uniform flow through a wide rectangular 
channel. If the bottom slope is increased, the flow depth will 
(a) increase, (b) decrease, or (c) remain constant.

13–45  Consider uniform flow through an open channel 
lined with bricks with a Manning coefficient of n � 0.015. 
If the Manning coefficient doubles (n � 0.030) as a result of 
some algae growth on surfaces while the flow cross section 
remains constant, the flow rate will (a) double, (b) decrease 
by a factor of !2, (c) remain unchanged, (d) decrease by 
half, or (e) decrease by a factor of 21/3.

13–46  Water flows uniformly half-full in a 2-m-diameter 
circular channel that is laid on a grade of 1.5 m/km. If the 
channel is made of finished concrete, determine the flow rate 
of the water.

13–47  Water is flowing uniformly in a finished-concrete 
channel of trapezoidal cross section with a bottom width of 

0.8 m, trapezoid angle of 50�, and a bottom angle of 0.4�. If 
the flow depth is measured to be 0.52 m, determine the flow 
rate of water through the channel.
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13–48  A 1-m-diameter semicircular channel made of unfin-
ished concrete is to transport water to a distance of 1.5 km 
uniformly. If the flow rate is to reach 4 m3/s when the chan-
nel is full, determine the minimum elevation difference across 
the channel.

13–49  During uniform flow in open channels, the flow 
velocity and the flow rate can be determined from the 
 Manning equations expressed as V0 � (a/n)Rh

2/3S0
1/2 and V

#
 � 

(a/n)AcRh
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1/2. What is the value and dimension of the con-
stant a in these equations in SI units? Also, explain how the 
Manning coefficient n can be determined when the friction 
factor f is known.

13–50  Show that for uniform critical flow, the general

critical slope relation Sc 5
gn2yc

a2R4/3
h

 reduces to Sc 5
gn2

a2y1/3
c

 for

film flow with b �� yc.

13–51  A trapezoidal channel with a bottom width of 6 m, 
free surface width of 12 m, and flow depth of 2.2 m dis-
charges water at a rate of 120 m3/s. If the surfaces of the 
channel are lined with asphalt (n � 0.016), determine the 
elevation drop of the channel per km.  Answer: 5.61 m

13–52  Reconsider Prob. 13–51. If the maximum flow 
height the channel can accommodate is 3.2 m, determine the 
maximum flow rate through the channel.

13–53  Consider water flow through two identical channels 
with square flow sections of 4 m � 4 m. Now the two channels 
are combined, forming a 8-m-wide channel. The flow rate 
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13-51 一個梯形渠道，底面寬度 6 m，自由表

面寬度 12 m，且流動深度 2.2 m，以流

率 120 m3/s 排水。若渠道的表面鋪設瀝
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青 (n =0.016)，試決定每 km 渠道的高度

降。(Answer: 5.61 m)
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claims that the head loss can be determined by simply multi-
plying the bottom slope by the channel length. Can it be this 
simple? Explain.

13–44C  Consider uniform flow through a wide rectangular 
channel. If the bottom slope is increased, the flow depth will 
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lined with bricks with a Manning coefficient of n � 0.015. 
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of the water.
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channel of trapezoidal cross section with a bottom width of 
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the flow depth is measured to be 0.52 m, determine the flow 
rate of water through the channel.
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13–48  A 1-m-diameter semicircular channel made of unfin-
ished concrete is to transport water to a distance of 1.5 km 
uniformly. If the flow rate is to reach 4 m3/s when the chan-
nel is full, determine the minimum elevation difference across 
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13–49  During uniform flow in open channels, the flow 
velocity and the flow rate can be determined from the 
 Manning equations expressed as V0 � (a/n)Rh
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1/2. What is the value and dimension of the con-
stant a in these equations in SI units? Also, explain how the 
Manning coefficient n can be determined when the friction 
factor f is known.

13–50  Show that for uniform critical flow, the general

critical slope relation Sc 5
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13–51  A trapezoidal channel with a bottom width of 6 m, 
free surface width of 12 m, and flow depth of 2.2 m dis-
charges water at a rate of 120 m3/s. If the surfaces of the 
channel are lined with asphalt (n � 0.016), determine the 
elevation drop of the channel per km.  Answer: 5.61 m

13–52  Reconsider Prob. 13–51. If the maximum flow 
height the channel can accommodate is 3.2 m, determine the 
maximum flow rate through the channel.

13–53  Consider water flow through two identical channels 
with square flow sections of 4 m � 4 m. Now the two channels 
are combined, forming a 8-m-wide channel. The flow rate 
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圖 P13-51　

13-52 重新考慮習題 13-51。若渠道可以容許的

最大流動高度是 3.2 m，試決定通過渠道

的最大流率。

13-53 考慮水流過兩個相同的矩形截面 4 m×4 

m 的渠道。現在結合兩個渠道，形成一

個 8 m 寬的渠道。流率被調整成流動深度

維持為 4 m。試決定結合兩個渠道後，流

率增加的百分比。

圖 P13-53　
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1.5 m
R � 1 m

FIGURE P13–58

is adjusted so that the flow depth remains constant at 4 m. 
Determine the percent increase in flow rate as a result of 
combining the channels.

13–58  A 2-m-internal-diameter circular steel storm drain 
(n � 0.012) is to discharge water uniformly at a rate of 12 m3/s 
to a distance of 1 km. If the maximum depth is to be 1.5 m, 
determine the required elevation drop.

4 m

4 m

4 m

4 m

FIGURE P13–53

45° 45°

5 m

h

FIGURE P13–63

13–54  A cast iron V-shaped water channel shown in 
Fig. P13–54 has a bottom slope of 0.5�. For a flow depth of 
0.75 m at the center, determine the discharge rate in uniform 
flow. Answer: 1.03 m3/s

13–59  Water is to be transported at a rate of 10 m3/s in 
uniform flow in an open channel whose surfaces are asphalt 
lined. The bottom slope is 0.0015. Determine the dimensions 
of the best cross section if the shape of the channel is (a) 
circular of diameter D, (b) rectangular of bottom width b, and 
(c) trap e zoidal of bottom width b.

13–60  Consider uniform flow in an asphalt-lined rect-
angular channel with a flow area of 2 m2 and a 

bottom slope of 0.0003. By varying the depth-to-width ratio 
y/b from 0.1 to 2.0, calculate and plot the flow rate, and con-
firm that the best flow cross section occurs when the flow 
depth-to-width ratio is 0.5.

13–61  A rectangular channel with a bottom slope of 0.0004 
is to be built to transport water at a rate of 20 m3/s. Deter-
mine the best dimensions of the channel if it is to be made of 
(a) unfinished concrete and (b) finished concrete.  Answer: (a) 
4.93 m � 2.47 m, (b) 4.66 m � 2.33 m

13–62  Repeat Prob. 13–61 for a flow rate of 17 m3/s.

13–63  A trapezoidal channel made of unfinished concrete 
has a bottom slope of 1�, base width of 5 m, and a side sur-
face slope of 1:1, as shown in Fig. P13–63. For a flow rate of 
25 m3/s, determine the normal depth h.

20° 20°
0.75 m

FIGURE P13–54

13–55  A clean-earth trapezoidal channel with a bottom 
width of 1.8 m and a side surface slope of 1:1 is to drain 
water uniformly at a rate of 8 m3/s to a distance of 1 km. If 
the flow depth is not to exceed 1.2 m, determine the required 
elevation drop.  Answer: 3.90 m

13–56  A water draining system with a constant slope of 
0.0025 is to be built of three circular channels made of fin-
ished concrete. Two of the channels have a diameter of 1.8 m 
and drain into the third channel. If all channels are to run 
half-full and the losses at the junction are negligible, deter-
mine the diameter of the third channel.  Answer: 2.33 m

13–57  Water flows in a channel whose bottom slope is 
0.002 and whose cross section is as shown in Fig. P13–57. 
The dimensions and the Manning coefficients for the surfaces 
of different subsections are also given on the figure. Determine 
the flow rate through the channel and the effective Manning 
coefficient for the channel.

6 m

1.5 m

2 m

2 m

10 m

n2 � 0.050
n1 � 0.014

1 2

FIGURE P13–57

13–64  Repeat Prob. 13–63 for a weedy excavated earth 
channel with n � 0.030.

Gradually and Rapidly Varied Flows and Hydraulic Jump

13–65C  How does gradually varied flow (GVF) differ from 
rapidly varied flow (RVF)?
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13-54 一個鑄鐵的 V 形水流渠道，示於圖 P13-

54，具有 0.5° 的底面斜率。當中心的流

動深度為 0.75 m，試決定均勻流的排水

率。(Answer: 1.03 m3/s)

圖 P13-54　
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is adjusted so that the flow depth remains constant at 4 m. 
Determine the percent increase in flow rate as a result of 
combining the channels.

13–58  A 2-m-internal-diameter circular steel storm drain 
(n � 0.012) is to discharge water uniformly at a rate of 12 m3/s 
to a distance of 1 km. If the maximum depth is to be 1.5 m, 
determine the required elevation drop.

4 m

4 m

4 m

4 m

FIGURE P13–53

45° 45°

5 m

h

FIGURE P13–63

13–54  A cast iron V-shaped water channel shown in 
Fig. P13–54 has a bottom slope of 0.5�. For a flow depth of 
0.75 m at the center, determine the discharge rate in uniform 
flow. Answer: 1.03 m3/s

13–59  Water is to be transported at a rate of 10 m3/s in 
uniform flow in an open channel whose surfaces are asphalt 
lined. The bottom slope is 0.0015. Determine the dimensions 
of the best cross section if the shape of the channel is (a) 
circular of diameter D, (b) rectangular of bottom width b, and 
(c) trap e zoidal of bottom width b.

13–60  Consider uniform flow in an asphalt-lined rect-
angular channel with a flow area of 2 m2 and a 

bottom slope of 0.0003. By varying the depth-to-width ratio 
y/b from 0.1 to 2.0, calculate and plot the flow rate, and con-
firm that the best flow cross section occurs when the flow 
depth-to-width ratio is 0.5.

13–61  A rectangular channel with a bottom slope of 0.0004 
is to be built to transport water at a rate of 20 m3/s. Deter-
mine the best dimensions of the channel if it is to be made of 
(a) unfinished concrete and (b) finished concrete.  Answer: (a) 
4.93 m � 2.47 m, (b) 4.66 m � 2.33 m

13–62  Repeat Prob. 13–61 for a flow rate of 17 m3/s.

13–63  A trapezoidal channel made of unfinished concrete 
has a bottom slope of 1�, base width of 5 m, and a side sur-
face slope of 1:1, as shown in Fig. P13–63. For a flow rate of 
25 m3/s, determine the normal depth h.

20° 20°
0.75 m

FIGURE P13–54

13–55  A clean-earth trapezoidal channel with a bottom 
width of 1.8 m and a side surface slope of 1:1 is to drain 
water uniformly at a rate of 8 m3/s to a distance of 1 km. If 
the flow depth is not to exceed 1.2 m, determine the required 
elevation drop.  Answer: 3.90 m

13–56  A water draining system with a constant slope of 
0.0025 is to be built of three circular channels made of fin-
ished concrete. Two of the channels have a diameter of 1.8 m 
and drain into the third channel. If all channels are to run 
half-full and the losses at the junction are negligible, deter-
mine the diameter of the third channel.  Answer: 2.33 m

13–57  Water flows in a channel whose bottom slope is 
0.002 and whose cross section is as shown in Fig. P13–57. 
The dimensions and the Manning coefficients for the surfaces 
of different subsections are also given on the figure. Determine 
the flow rate through the channel and the effective Manning 
coefficient for the channel.

6 m

1.5 m

2 m

2 m

10 m

n2 � 0.050
n1 � 0.014

1 2

FIGURE P13–57

13–64  Repeat Prob. 13–63 for a weedy excavated earth 
channel with n � 0.030.

Gradually and Rapidly Varied Flows and Hydraulic Jump

13–65C  How does gradually varied flow (GVF) differ from 
rapidly varied flow (RVF)?
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13-55 一個乾淨泥土的梯形渠道，其底面寬 1.8 

m 且邊牆坡度為 1:1，要用來以流率 8 

m3/s 均勻地排水經過 1 km 的距離。如果

流動深度不能超過 1.2 m，試決定需要的

高度差。(Answer: 3.90 m)

13-56 一個有 0.0025 的常數斜率的排水系統要

用精製混凝土製成的三個圓形渠道建造而

成。其中兩個渠道的直徑為 1.8 m，並且

其排水都進入第三個渠道中。如果所用渠

道在運作時都是半滿的，並且交接位置的

損失可以忽略，試決定第三個渠道的直

徑。(Answer: 2.33 m)

13-57 水在一個渠道中流動，其底面斜率是 

0.002，截面如圖 P13-57 所示。不同次區

域的截面尺寸與表面的曼寧係數也在圖上

給出。試決定通過渠道的流率與渠道的等

效曼寧係數。

圖 P13-57　
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is adjusted so that the flow depth remains constant at 4 m. 
Determine the percent increase in flow rate as a result of 
combining the channels.

13–58  A 2-m-internal-diameter circular steel storm drain 
(n � 0.012) is to discharge water uniformly at a rate of 12 m3/s 
to a distance of 1 km. If the maximum depth is to be 1.5 m, 
determine the required elevation drop.

4 m

4 m

4 m

4 m

FIGURE P13–53

45° 45°

5 m

h

FIGURE P13–63

13–54  A cast iron V-shaped water channel shown in 
Fig. P13–54 has a bottom slope of 0.5�. For a flow depth of 
0.75 m at the center, determine the discharge rate in uniform 
flow. Answer: 1.03 m3/s

13–59  Water is to be transported at a rate of 10 m3/s in 
uniform flow in an open channel whose surfaces are asphalt 
lined. The bottom slope is 0.0015. Determine the dimensions 
of the best cross section if the shape of the channel is (a) 
circular of diameter D, (b) rectangular of bottom width b, and 
(c) trap e zoidal of bottom width b.

13–60  Consider uniform flow in an asphalt-lined rect-
angular channel with a flow area of 2 m2 and a 

bottom slope of 0.0003. By varying the depth-to-width ratio 
y/b from 0.1 to 2.0, calculate and plot the flow rate, and con-
firm that the best flow cross section occurs when the flow 
depth-to-width ratio is 0.5.

13–61  A rectangular channel with a bottom slope of 0.0004 
is to be built to transport water at a rate of 20 m3/s. Deter-
mine the best dimensions of the channel if it is to be made of 
(a) unfinished concrete and (b) finished concrete.  Answer: (a) 
4.93 m � 2.47 m, (b) 4.66 m � 2.33 m

13–62  Repeat Prob. 13–61 for a flow rate of 17 m3/s.

13–63  A trapezoidal channel made of unfinished concrete 
has a bottom slope of 1�, base width of 5 m, and a side sur-
face slope of 1:1, as shown in Fig. P13–63. For a flow rate of 
25 m3/s, determine the normal depth h.

20° 20°
0.75 m

FIGURE P13–54

13–55  A clean-earth trapezoidal channel with a bottom 
width of 1.8 m and a side surface slope of 1:1 is to drain 
water uniformly at a rate of 8 m3/s to a distance of 1 km. If 
the flow depth is not to exceed 1.2 m, determine the required 
elevation drop.  Answer: 3.90 m

13–56  A water draining system with a constant slope of 
0.0025 is to be built of three circular channels made of fin-
ished concrete. Two of the channels have a diameter of 1.8 m 
and drain into the third channel. If all channels are to run 
half-full and the losses at the junction are negligible, deter-
mine the diameter of the third channel.  Answer: 2.33 m

13–57  Water flows in a channel whose bottom slope is 
0.002 and whose cross section is as shown in Fig. P13–57. 
The dimensions and the Manning coefficients for the surfaces 
of different subsections are also given on the figure. Determine 
the flow rate through the channel and the effective Manning 
coefficient for the channel.

6 m

1.5 m

2 m

2 m

10 m

n2 � 0.050
n1 � 0.014

1 2

FIGURE P13–57

13–64  Repeat Prob. 13–63 for a weedy excavated earth 
channel with n � 0.030.

Gradually and Rapidly Varied Flows and Hydraulic Jump

13–65C  How does gradually varied flow (GVF) differ from 
rapidly varied flow (RVF)?
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混凝土渠道

疏灌木

13-58 一個 2 m 內部直徑的圓形鋼製暴雨排水道 

(n =0.012) 要用來以流率 12 m3/s 均勻的

排水經過 1 km 的距離。最大水流深度是 

1.5 m，試決定需要的高度降。

圖 P13-58　
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is adjusted so that the flow depth remains constant at 4 m. 
Determine the percent increase in flow rate as a result of 
combining the channels.

13–58  A 2-m-internal-diameter circular steel storm drain 
(n � 0.012) is to discharge water uniformly at a rate of 12 m3/s 
to a distance of 1 km. If the maximum depth is to be 1.5 m, 
determine the required elevation drop.

4 m

4 m

4 m

4 m

FIGURE P13–53

45° 45°

5 m

h

FIGURE P13–63

13–54  A cast iron V-shaped water channel shown in 
Fig. P13–54 has a bottom slope of 0.5�. For a flow depth of 
0.75 m at the center, determine the discharge rate in uniform 
flow. Answer: 1.03 m3/s

13–59  Water is to be transported at a rate of 10 m3/s in 
uniform flow in an open channel whose surfaces are asphalt 
lined. The bottom slope is 0.0015. Determine the dimensions 
of the best cross section if the shape of the channel is (a) 
circular of diameter D, (b) rectangular of bottom width b, and 
(c) trap e zoidal of bottom width b.

13–60  Consider uniform flow in an asphalt-lined rect-
angular channel with a flow area of 2 m2 and a 

bottom slope of 0.0003. By varying the depth-to-width ratio 
y/b from 0.1 to 2.0, calculate and plot the flow rate, and con-
firm that the best flow cross section occurs when the flow 
depth-to-width ratio is 0.5.

13–61  A rectangular channel with a bottom slope of 0.0004 
is to be built to transport water at a rate of 20 m3/s. Deter-
mine the best dimensions of the channel if it is to be made of 
(a) unfinished concrete and (b) finished concrete.  Answer: (a) 
4.93 m � 2.47 m, (b) 4.66 m � 2.33 m

13–62  Repeat Prob. 13–61 for a flow rate of 17 m3/s.

13–63  A trapezoidal channel made of unfinished concrete 
has a bottom slope of 1�, base width of 5 m, and a side sur-
face slope of 1:1, as shown in Fig. P13–63. For a flow rate of 
25 m3/s, determine the normal depth h.

20° 20°
0.75 m

FIGURE P13–54

13–55  A clean-earth trapezoidal channel with a bottom 
width of 1.8 m and a side surface slope of 1:1 is to drain 
water uniformly at a rate of 8 m3/s to a distance of 1 km. If 
the flow depth is not to exceed 1.2 m, determine the required 
elevation drop.  Answer: 3.90 m

13–56  A water draining system with a constant slope of 
0.0025 is to be built of three circular channels made of fin-
ished concrete. Two of the channels have a diameter of 1.8 m 
and drain into the third channel. If all channels are to run 
half-full and the losses at the junction are negligible, deter-
mine the diameter of the third channel.  Answer: 2.33 m

13–57  Water flows in a channel whose bottom slope is 
0.002 and whose cross section is as shown in Fig. P13–57. 
The dimensions and the Manning coefficients for the surfaces 
of different subsections are also given on the figure. Determine 
the flow rate through the channel and the effective Manning 
coefficient for the channel.

6 m

1.5 m

2 m

2 m

10 m

n2 � 0.050
n1 � 0.014

1 2

FIGURE P13–57

13–64  Repeat Prob. 13–63 for a weedy excavated earth 
channel with n � 0.030.

Gradually and Rapidly Varied Flows and Hydraulic Jump

13–65C  How does gradually varied flow (GVF) differ from 
rapidly varied flow (RVF)?
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13-59 水要在一個明渠中以均勻的流率 10 m3/s 

被輸送，渠道表面鋪設瀝青，底面斜率 

0.0015。試決定最好截面的尺寸：若渠道

的形狀是 (a) 直徑 D 的圓形，(b) 底部寬 b 

的矩形，與 (c) 底部寬 b 的梯形。
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13-60 考慮一個表面鋪有瀝青的矩形渠道中的

均勻流。其流動面積 2 m2 且底面斜率 

0.0003，藉著變動深寬比 y/b 從 0.1 到 

2.0，試計算並畫出流率，並證實最好的

流動截面發生在深寬比為 0.5 時。

13-61 一個矩形渠道，其底面斜率 0.0004 要建

造來以流率 20 m3/s 輸送水。試決定渠道

的最好的尺寸：若渠道要由 (a) 粗製混凝

土與 (b) 精製混凝土建造而成。(Answer: 

(a) 4.93 m×2.47 m, (b) 4.66 m×2.33 m)

13-62 對一個 17 m3/s 的流率，重做習題 13-

61。

13-63 一個由粗製混凝土製成的渠道，底面斜

率為 1°，底面寬度 5 m，且有 1:1 的斜率

的邊牆，如圖 P13-63 所示。若流率為 25 

m3/s，試決定正常深度 h。

圖 P13-63　

776
OPEN-CHANNEL FLOW

1.5 m
R � 1 m

FIGURE P13–58

is adjusted so that the flow depth remains constant at 4 m. 
Determine the percent increase in flow rate as a result of 
combining the channels.

13–58  A 2-m-internal-diameter circular steel storm drain 
(n � 0.012) is to discharge water uniformly at a rate of 12 m3/s 
to a distance of 1 km. If the maximum depth is to be 1.5 m, 
determine the required elevation drop.

4 m

4 m

4 m

4 m

FIGURE P13–53

45° 45°

5 m

h

FIGURE P13–63

13–54  A cast iron V-shaped water channel shown in 
Fig. P13–54 has a bottom slope of 0.5�. For a flow depth of 
0.75 m at the center, determine the discharge rate in uniform 
flow. Answer: 1.03 m3/s

13–59  Water is to be transported at a rate of 10 m3/s in 
uniform flow in an open channel whose surfaces are asphalt 
lined. The bottom slope is 0.0015. Determine the dimensions 
of the best cross section if the shape of the channel is (a) 
circular of diameter D, (b) rectangular of bottom width b, and 
(c) trap e zoidal of bottom width b.

13–60  Consider uniform flow in an asphalt-lined rect-
angular channel with a flow area of 2 m2 and a 

bottom slope of 0.0003. By varying the depth-to-width ratio 
y/b from 0.1 to 2.0, calculate and plot the flow rate, and con-
firm that the best flow cross section occurs when the flow 
depth-to-width ratio is 0.5.

13–61  A rectangular channel with a bottom slope of 0.0004 
is to be built to transport water at a rate of 20 m3/s. Deter-
mine the best dimensions of the channel if it is to be made of 
(a) unfinished concrete and (b) finished concrete.  Answer: (a) 
4.93 m � 2.47 m, (b) 4.66 m � 2.33 m

13–62  Repeat Prob. 13–61 for a flow rate of 17 m3/s.

13–63  A trapezoidal channel made of unfinished concrete 
has a bottom slope of 1�, base width of 5 m, and a side sur-
face slope of 1:1, as shown in Fig. P13–63. For a flow rate of 
25 m3/s, determine the normal depth h.

20° 20°
0.75 m

FIGURE P13–54

13–55  A clean-earth trapezoidal channel with a bottom 
width of 1.8 m and a side surface slope of 1:1 is to drain 
water uniformly at a rate of 8 m3/s to a distance of 1 km. If 
the flow depth is not to exceed 1.2 m, determine the required 
elevation drop.  Answer: 3.90 m

13–56  A water draining system with a constant slope of 
0.0025 is to be built of three circular channels made of fin-
ished concrete. Two of the channels have a diameter of 1.8 m 
and drain into the third channel. If all channels are to run 
half-full and the losses at the junction are negligible, deter-
mine the diameter of the third channel.  Answer: 2.33 m

13–57  Water flows in a channel whose bottom slope is 
0.002 and whose cross section is as shown in Fig. P13–57. 
The dimensions and the Manning coefficients for the surfaces 
of different subsections are also given on the figure. Determine 
the flow rate through the channel and the effective Manning 
coefficient for the channel.

6 m

1.5 m

2 m

2 m

10 m

n2 � 0.050
n1 � 0.014

1 2

FIGURE P13–57

13–64  Repeat Prob. 13–63 for a weedy excavated earth 
channel with n � 0.030.

Gradually and Rapidly Varied Flows and Hydraulic Jump

13–65C  How does gradually varied flow (GVF) differ from 
rapidly varied flow (RVF)?
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13-64 對 n=0.030 的長草土渠道，重做習題 13-

63。

漸變流、急變流與水躍

13-65C 漸變流與急變流是如何不同的？

13-66C 非均勻流或變速流是如何與均勻流不同

的？

13-67C 有人宣稱與表面壁剪力有關的摩擦損失在

分析急變流時可以忽略，但在分析漸變流

時應該考慮。你同意這個聲明嗎？為你的

答案辯護。

13-68C 考慮水穩定地在一個上坡的矩形截面的渠

道中流動。如果流動是超臨界的，在流動

方向的流動深度會 (a) 增加，(b) 維持常

數，或 (c) 減小。

13-69C 次臨界流是否可能經歷一個水躍？解釋

之。

13-70C 為什麼水躍有時候會被用來消耗機械能？

水躍的能量耗散比是如何定義的？

13-71C 考慮水穩定地在一個矩形截面的水平渠道

中的流動。如果流動是次臨界的，在流動

方向的流動深度會 (a) 增加，(b) 維持常

數，或 (c) 減小。

13-72C 考慮水穩定在一個下坡的矩形截面的渠道

中流動。如果流動是次臨界的並且流動深

度大於正常深度 (y >yn)，則在流動方向

的流動深度會 (a) 增加，(b) 維持常數，

或 (c) 減小。

13-73C 考慮水穩定在一個水平的矩形截面的渠道

中流動。如果流動是超臨界的，則在流動

方向的流動深度會 (a) 增加，(b) 維持常

數，或 (c) 減小。

13-74C 考慮水穩定地在一個下坡的矩形截面的渠

道中流動。如果流動是次臨界的且流動深

度小於正常深度 (y <yn)，則在流動方向

的流動深度會 (a) 增加，(b) 維持常數，

或 (c) 減小。

13-75 水在一個 90° 的 V 形鑄鐵渠道中以流率 3 

m3/s 流動，底面斜率是 0.002。試決定此

流動的渠道斜率應該被分類為溫和的、臨

界的或陡峭的。(Answer: 溫和的)

13-76 考慮水在一個斜率 0.4° 的鋪磚寬渠道中

的均勻流。若渠道被分類為陡峭的，決定

其流動深度的範圍。

13-77 考慮水在一個 3.5 m 寬，底面斜率 0.5° 的

粗製混凝土矩形渠道中流動。如果流率

是 8.5 m3/s，試決定此渠道的斜率是溫和

的、臨界的或陡峭的。同時，若流動深

度為 0.9 m，分類當流動發展時的表面形

狀。

13-78 水均勻地在一個精製混凝土表面的矩形

渠道中流動。渠道寬度 3 m，流動深度 
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1.2 m，與底面斜率 0.002，試決定對此流

動，渠道應該被分類為溫和的、臨界的或

陡峭的。

圖 P13-78　

CHAPTER 13
777

13–79  Water discharging into an 8-m-wide rectangular 
horizontal channel from a sluice gate is observed 

to have undergone a hydraulic jump. The flow depth and 
velocity before the jump are 1.2 m and 9 m/s, respectively. 
Determine (a) the flow depth and the Froude number after 
the jump, (b) the head loss and the dissipation ratio, and (c) the 
mechanical energy dissipated by the hydraulic jump.

13–66C  How does nonuniform or varied flow differ from 
uniform flow?

13–67C  Someone claims that frictional losses associated 
with wall shear on surfaces can be neglected in the analysis 
of rapidly varied flow, but should be considered in the analy-
sis of gradually varied flow. Do you agree with this claim? 
Justify your answer.

13–68C  Consider steady flow of water in an upward-sloped 
channel of rectangular cross section. If the flow is supercriti-
cal, the flow depth will (a) increase, (b) remain constant, or 
(c) decrease in the flow direction.

13–69C  Is it possible for subcritical flow to undergo a 
hydraulic jump? Explain.

13–70C  Why is the hydraulic jump sometimes used to 
dissipate mechanical energy? How is the energy dissipation 
ratio for a hydraulic jump defined?

13–71C  Consider steady flow of water in a horizontal 
channel of rectangular cross section. If the flow is subcriti-
cal, the flow depth will (a) increase, (b) remain constant, or 
(c) decrease in the flow direction.

13–72C  Consider steady flow of water in a downward-
sloped channel of rectangular cross section. If the flow is 
subcritical and the flow depth is greater than the normal 
depth ( y � yn), the flow depth will (a) increase, (b) remain 
constant, or (c) decrease in the flow direction.

13–73C  Consider steady flow of water in a horizontal 
channel of rectangular cross section. If the flow is supercriti-
cal, the flow depth will (a) increase, (b) remain constant, or 
(c) decrease in the flow direction.

13–74C  Consider steady flow of water in a downward-
sloped channel of rectangular cross section. If the flow is 
subcritical and the flow depth is less than the normal depth 
( y  �  yn), the flow depth will (a) increase, (b) remain con-
stant, or (c) decrease in the flow direction.

13–75  Water is flowing in a 90� V-shaped cast iron channel 
with a bottom slope of 0.002 at a rate of 3 m3/s. Determine if 
the slope of this channel should be classified as mild, critical, 
or steep for this flow.  Answer: mild

13–76  Consider uniform water flow in a wide brick chan-
nel of slope 0.4�. Determine the range of flow depth for 
which the channel is classified as being steep.

13–77  Consider the flow of water through a 3.5-m-wide 
unfinished-concrete rectangular channel with a bottom slope 
of 0.5�. If the flow rate is 8.5 m3/s, determine if the slope of 
this channel is mild, critical, or steep. Also, for a flow depth 
of 0.9 m, classify the surface profile while the flow develops.

13–78  Water flows uniformly in a rectangular channel with 
finished-concrete surfaces. The channel width is 3 m, the flow 
depth is 1.2 m, and the bottom slope is 0.002. Determine if the 
channel should be classified as mild, critical, or steep for this flow.

y � 1.2 m

b � 3 m

FIGURE P13–78

V1 � 9 m/s V2

y1 � 1.2 m
y2

(1) (2)

FIGURE P13–79

13–80  Consider the flow of water in a 10-m-wide channel 
at a rate of 70 m3/s and a flow depth of 0.50 m. The water 
now undergoes a hydraulic jump, and the flow depth after 
the jump is measured to be 4 m. Determine the mechanical 
power wasted during this jump.  Answer: 4.35 MW

13–81  The flow depth and velocity of water after undergo-
ing a hydraulic jump are measured to be 1.1 m and 1.75 m/s, 
respectively. Determine the flow depth and velocity before 
the jump, and the fraction of mechanical energy dissipated.

13–82  Consider uniform flow of water in a wide 
rectangular channel with a per-unit-width 

flow rate of 1.5 m3/s�m and a Manning coefficient of 0.03. 
The slope of the channel is 0.0005. (a) Calculate the normal 
and critical depths of the flow and determine if the uniform 
flow is subcritical or supercritical. (b) Next, a dam is 
installed (at x � 0) in order to impound a reservoir of water 
upstream. This raises the water surface profile upstream, 
creating a “backwater” curve (Fig. P13–82). The new water 
depth just upstream of the dam is 2.5 m. Determine how far 
upstream of the dam the “reservoir” extends. You may con-
sider the reservoir boundary to be the point at which the 
water depth is within 5% of the original uniform water 
depth.  Answer: 3500 m
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13-79 水從一個水閘門排入一個 8 m 寬的水平矩

形渠道中，並被觀察到經歷一個水躍。水

躍之前的流動深度與流速分別是 1.2 m 與 

9 m/s。試求 (a) 水躍之後的流動深度與福

勞數，(b) 水頭損失與耗散比，及 (c) 水

躍所消散的機械能。

圖 P13-79　
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13–79  Water discharging into an 8-m-wide rectangular 
horizontal channel from a sluice gate is observed 

to have undergone a hydraulic jump. The flow depth and 
velocity before the jump are 1.2 m and 9 m/s, respectively. 
Determine (a) the flow depth and the Froude number after 
the jump, (b) the head loss and the dissipation ratio, and (c) the 
mechanical energy dissipated by the hydraulic jump.

13–66C  How does nonuniform or varied flow differ from 
uniform flow?

13–67C  Someone claims that frictional losses associated 
with wall shear on surfaces can be neglected in the analysis 
of rapidly varied flow, but should be considered in the analy-
sis of gradually varied flow. Do you agree with this claim? 
Justify your answer.

13–68C  Consider steady flow of water in an upward-sloped 
channel of rectangular cross section. If the flow is supercriti-
cal, the flow depth will (a) increase, (b) remain constant, or 
(c) decrease in the flow direction.

13–69C  Is it possible for subcritical flow to undergo a 
hydraulic jump? Explain.

13–70C  Why is the hydraulic jump sometimes used to 
dissipate mechanical energy? How is the energy dissipation 
ratio for a hydraulic jump defined?

13–71C  Consider steady flow of water in a horizontal 
channel of rectangular cross section. If the flow is subcriti-
cal, the flow depth will (a) increase, (b) remain constant, or 
(c) decrease in the flow direction.

13–72C  Consider steady flow of water in a downward-
sloped channel of rectangular cross section. If the flow is 
subcritical and the flow depth is greater than the normal 
depth ( y � yn), the flow depth will (a) increase, (b) remain 
constant, or (c) decrease in the flow direction.

13–73C  Consider steady flow of water in a horizontal 
channel of rectangular cross section. If the flow is supercriti-
cal, the flow depth will (a) increase, (b) remain constant, or 
(c) decrease in the flow direction.

13–74C  Consider steady flow of water in a downward-
sloped channel of rectangular cross section. If the flow is 
subcritical and the flow depth is less than the normal depth 
( y  �  yn), the flow depth will (a) increase, (b) remain con-
stant, or (c) decrease in the flow direction.

13–75  Water is flowing in a 90� V-shaped cast iron channel 
with a bottom slope of 0.002 at a rate of 3 m3/s. Determine if 
the slope of this channel should be classified as mild, critical, 
or steep for this flow.  Answer: mild

13–76  Consider uniform water flow in a wide brick chan-
nel of slope 0.4�. Determine the range of flow depth for 
which the channel is classified as being steep.

13–77  Consider the flow of water through a 3.5-m-wide 
unfinished-concrete rectangular channel with a bottom slope 
of 0.5�. If the flow rate is 8.5 m3/s, determine if the slope of 
this channel is mild, critical, or steep. Also, for a flow depth 
of 0.9 m, classify the surface profile while the flow develops.

13–78  Water flows uniformly in a rectangular channel with 
finished-concrete surfaces. The channel width is 3 m, the flow 
depth is 1.2 m, and the bottom slope is 0.002. Determine if the 
channel should be classified as mild, critical, or steep for this flow.

y � 1.2 m

b � 3 m

FIGURE P13–78

V1 � 9 m/s V2

y1 � 1.2 m
y2

(1) (2)

FIGURE P13–79

13–80  Consider the flow of water in a 10-m-wide channel 
at a rate of 70 m3/s and a flow depth of 0.50 m. The water 
now undergoes a hydraulic jump, and the flow depth after 
the jump is measured to be 4 m. Determine the mechanical 
power wasted during this jump.  Answer: 4.35 MW

13–81  The flow depth and velocity of water after undergo-
ing a hydraulic jump are measured to be 1.1 m and 1.75 m/s, 
respectively. Determine the flow depth and velocity before 
the jump, and the fraction of mechanical energy dissipated.

13–82  Consider uniform flow of water in a wide 
rectangular channel with a per-unit-width 

flow rate of 1.5 m3/s�m and a Manning coefficient of 0.03. 
The slope of the channel is 0.0005. (a) Calculate the normal 
and critical depths of the flow and determine if the uniform 
flow is subcritical or supercritical. (b) Next, a dam is 
installed (at x � 0) in order to impound a reservoir of water 
upstream. This raises the water surface profile upstream, 
creating a “backwater” curve (Fig. P13–82). The new water 
depth just upstream of the dam is 2.5 m. Determine how far 
upstream of the dam the “reservoir” extends. You may con-
sider the reservoir boundary to be the point at which the 
water depth is within 5% of the original uniform water 
depth.  Answer: 3500 m
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13-80 考慮水在一個 10 m 寬的渠道中以流率 70 

m3/s 流動，流動深度為 0.50 m。現在水

經歷一個水躍，且水躍後的流動深度經量

測為 4 m。試決定這個水躍所浪費的機械

能。(Answer: 4.35 MW)

13-81 水在經過一個水躍以後的流動深度與速度

經量測分別為 1.1 m 與 1.75 m/s。試求水

躍之前的流動深度與速度，及消耗的機械

能的比例。

13-82 考慮水在一個寬矩形渠道中的均勻流動，

其每單位寬度的流率為 1.5 m3/s ⋅m 且曼

寧係數為 0.03，渠道的斜率為 0.0005。

(a) 計算此流動的正常與臨界深度，並且

決定此流動是次臨界的或超臨界的。(b) 

其次，一個水壩被建置 (在 x =0)，為的

是在上游圍出一個水庫。這升高了上游的

水面形狀，並創造出一個“背水”線 (圖  

P13-82)。恰在水壩上游的新的水深是 2.5 

m。試決定在水壩上游的水庫可以延伸

多遠。你可以考慮水庫的邊界是當水深

與原來均勻的水深在 5% 以內的範圍。

(Answer: 3500 m)

圖 P13-82　
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13–83  Water flowing in a wide horizontal channel at a flow 
depth of 56 cm and an average velocity of 9 m/s undergoes a 
hydraulic jump. Determine the head loss associated with the 
hydraulic jump.

13–84  During a hydraulic jump in a wide channel, the flow 
depth increases from 0.6 to 3 m. Determine the velocities and 
Froude numbers before and after the jump, and the energy 
dissipation ratio.

13–85  Consider gradually varied flow over a bump in 
a wide channel, as shown in Fig. P13–85. The 

initial flow velocity is 0.75 m/s, the initial flow depth is 1 m, 
the Manning parameter is 0.02, and the elevation of the chan-
nel bottom is prescribed to be

zb � �zb exp[�0.001(x�100)2]

where the maximum bump height �zb is equal to 0.15 m and 
the crest of the bump is located at x � 100 m. (a) Calculate 
and plot the critical depth of the flow and (where it exists) 
the normal depth of the flow. (b) Integrate the GVF equation 
over the range 0 � x � 200 m, and comment on the observed 
behavior of the free surface in light of the classification 
scheme presented in Table 13–3.

13–86  Consider a wide rectangular water channel 
with a per-unit-width flow rate of 5 m3/s�m 

and a Manning coefficient of n � 0.02. The channel is com-
prised of a 100 m length having a slope of S01 � 0.01 fol-
lowed by a 100 m length having a slope of S02 � 0.02. 
(a) Calculate the normal and critical depths for the two 
channel segments. (b) Given an initial water depth of 1.25 m, 
calculate and graph the water surface profile over the full 
200 m extent of the channel. Also classify the two channel 
segments (M1, A2, etc.).

yn

yn

x � 0

FIGURE P13–82

y1 � 1 m

100 m

x � 0

FIGURE P13–85

13–87  Repeat Problem 13–86 for the case of an initial 
water depth of 0.75 m instead of 1.25 m.

13–88  While the GVF equation cannot be used to pre-
dict a hydraulic jump directly, it can be coupled 

with the ideal hydraulic jump depth ratio equation in order to 
help locate the position at which a jump will occur in a channel. 
Consider a jump created in a wide (Rh � y) horizontal (S0 � 0) 
laboratory flume having a length of 3 m and a Manning 
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之前

之後

13-83 水以流動深度 56 cm 在一個寬的矩形渠道

中以 9 m/s 的平均速度流動，並經歷一個

水躍。試求與此水躍相關的水頭損失。

13-84 在一個寬渠道的一個水躍中，水流深度從 

0.6 增加至 3 m。試決定水躍之前與之後

的速度和福勞數，以及能量耗散比。

13-85 考慮漸變流通過在一個寬渠道的突起，如

圖 P13-85 所示。起始速度是 0.75 m/s，

起始水流深度是 1 m，曼寧參數是 0.02，

而渠道底面的高度被描述為

zb =∆zb exp[−0.001(x−100)2]

 其中最大的凸起高度 ∆zb 等於 0.15 m，而

凸起的頂點位於 x=100 處。(a) 計算並畫

出此流動的臨界深度及 (在其存在的地方) 
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流動的正常深度，(b) 在範圍 0 ≤x ≤  200 

m，積分 GVF 方程式，並根據對表 13-3 

分類方法的了解，對觀察到的自由表面的

行為加以評論。

圖 P13-85　
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13–83  Water flowing in a wide horizontal channel at a flow 
depth of 56 cm and an average velocity of 9 m/s undergoes a 
hydraulic jump. Determine the head loss associated with the 
hydraulic jump.

13–84  During a hydraulic jump in a wide channel, the flow 
depth increases from 0.6 to 3 m. Determine the velocities and 
Froude numbers before and after the jump, and the energy 
dissipation ratio.

13–85  Consider gradually varied flow over a bump in 
a wide channel, as shown in Fig. P13–85. The 

initial flow velocity is 0.75 m/s, the initial flow depth is 1 m, 
the Manning parameter is 0.02, and the elevation of the chan-
nel bottom is prescribed to be

zb � �zb exp[�0.001(x�100)2]

where the maximum bump height �zb is equal to 0.15 m and 
the crest of the bump is located at x � 100 m. (a) Calculate 
and plot the critical depth of the flow and (where it exists) 
the normal depth of the flow. (b) Integrate the GVF equation 
over the range 0 � x � 200 m, and comment on the observed 
behavior of the free surface in light of the classification 
scheme presented in Table 13–3.

13–86  Consider a wide rectangular water channel 
with a per-unit-width flow rate of 5 m3/s�m 

and a Manning coefficient of n � 0.02. The channel is com-
prised of a 100 m length having a slope of S01 � 0.01 fol-
lowed by a 100 m length having a slope of S02 � 0.02. 
(a) Calculate the normal and critical depths for the two 
channel segments. (b) Given an initial water depth of 1.25 m, 
calculate and graph the water surface profile over the full 
200 m extent of the channel. Also classify the two channel 
segments (M1, A2, etc.).
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yn

x � 0

FIGURE P13–82

y1 � 1 m

100 m

x � 0

FIGURE P13–85

13–87  Repeat Problem 13–86 for the case of an initial 
water depth of 0.75 m instead of 1.25 m.

13–88  While the GVF equation cannot be used to pre-
dict a hydraulic jump directly, it can be coupled 

with the ideal hydraulic jump depth ratio equation in order to 
help locate the position at which a jump will occur in a channel. 
Consider a jump created in a wide (Rh � y) horizontal (S0 � 0) 
laboratory flume having a length of 3 m and a Manning 
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13-86 考慮一個寬的矩形水渠道，其每單位

寬度的流率為 5 m3/s ⋅m 而曼寧係數為 

n =0.02。這個渠道的前 100 m 長有一個 

S01 =0.01 的斜率，後 100 m 長則有一個 

S02 =0.02 的斜率。(a) 計算這兩個渠道

段的正常與臨界深度。(b) 若起始水深為 

1.25 m，計算並畫出渠道整個 200 m 長度

範圍內的水面形狀，並分類這兩個渠道段 

(M1、A2 等)。

圖 P13-86　
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13–83  Water flowing in a wide horizontal channel at a flow 
depth of 56 cm and an average velocity of 9 m/s undergoes a 
hydraulic jump. Determine the head loss associated with the 
hydraulic jump.

13–84  During a hydraulic jump in a wide channel, the flow 
depth increases from 0.6 to 3 m. Determine the velocities and 
Froude numbers before and after the jump, and the energy 
dissipation ratio.

13–85  Consider gradually varied flow over a bump in 
a wide channel, as shown in Fig. P13–85. The 

initial flow velocity is 0.75 m/s, the initial flow depth is 1 m, 
the Manning parameter is 0.02, and the elevation of the chan-
nel bottom is prescribed to be

zb � �zb exp[�0.001(x�100)2]

where the maximum bump height �zb is equal to 0.15 m and 
the crest of the bump is located at x � 100 m. (a) Calculate 
and plot the critical depth of the flow and (where it exists) 
the normal depth of the flow. (b) Integrate the GVF equation 
over the range 0 � x � 200 m, and comment on the observed 
behavior of the free surface in light of the classification 
scheme presented in Table 13–3.

13–86  Consider a wide rectangular water channel 
with a per-unit-width flow rate of 5 m3/s�m 

and a Manning coefficient of n � 0.02. The channel is com-
prised of a 100 m length having a slope of S01 � 0.01 fol-
lowed by a 100 m length having a slope of S02 � 0.02. 
(a) Calculate the normal and critical depths for the two 
channel segments. (b) Given an initial water depth of 1.25 m, 
calculate and graph the water surface profile over the full 
200 m extent of the channel. Also classify the two channel 
segments (M1, A2, etc.).
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x � 0

FIGURE P13–82

y1 � 1 m

100 m

x � 0

FIGURE P13–85

13–87  Repeat Problem 13–86 for the case of an initial 
water depth of 0.75 m instead of 1.25 m.

13–88  While the GVF equation cannot be used to pre-
dict a hydraulic jump directly, it can be coupled 

with the ideal hydraulic jump depth ratio equation in order to 
help locate the position at which a jump will occur in a channel. 
Consider a jump created in a wide (Rh � y) horizontal (S0 � 0) 
laboratory flume having a length of 3 m and a Manning 
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13-87 對一個起始水深 0.75 m (而不是 1.25 m) 

的情況，重做習題 13-86。

13-88 雖然 GVF 方程式不能直接用來預測水

躍，但它可以和理想的水躍深度比方程式

結合，目的是幫助定位水躍在渠道中的

發生位置。考慮在一個寬的 (Rh ≈y) 水平 

(S0 =0) 實驗室引水槽 (其長度 3 m，曼寧

係數 0.009) 中所創造的一個水躍。在領

頭閘門下 x =0 處有一個起始深度 0.01 m 

的超臨界流。在尾端閘門 x =3 m 處，則

導致出口水深度為 0.08 m。每單位寬度的

流率為 0.025 m3/s ⋅m。(a) 計算此流動的

臨界深度，並證明起始與最後的流動分別

是超臨界與次臨界的。(b) 決定水躍的位

置。提示：積分 GVF 方程式 x=0 到一個

水躍的“猜測”位置，應用水躍的深度比

方程式，再積分 GVF 方程式使用此新的

起始條件從水躍位置到 x =3 m。如果你

沒有得到期望的溢流深度，重試一個新的

水躍位置。(Answer: 1.80 m)

圖 P13-88　
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13–83  Water flowing in a wide horizontal channel at a flow 
depth of 56 cm and an average velocity of 9 m/s undergoes a 
hydraulic jump. Determine the head loss associated with the 
hydraulic jump.

13–84  During a hydraulic jump in a wide channel, the flow 
depth increases from 0.6 to 3 m. Determine the velocities and 
Froude numbers before and after the jump, and the energy 
dissipation ratio.

13–85  Consider gradually varied flow over a bump in 
a wide channel, as shown in Fig. P13–85. The 

initial flow velocity is 0.75 m/s, the initial flow depth is 1 m, 
the Manning parameter is 0.02, and the elevation of the chan-
nel bottom is prescribed to be

zb � �zb exp[�0.001(x�100)2]

where the maximum bump height �zb is equal to 0.15 m and 
the crest of the bump is located at x � 100 m. (a) Calculate 
and plot the critical depth of the flow and (where it exists) 
the normal depth of the flow. (b) Integrate the GVF equation 
over the range 0 � x � 200 m, and comment on the observed 
behavior of the free surface in light of the classification 
scheme presented in Table 13–3.

13–86  Consider a wide rectangular water channel 
with a per-unit-width flow rate of 5 m3/s�m 

and a Manning coefficient of n � 0.02. The channel is com-
prised of a 100 m length having a slope of S01 � 0.01 fol-
lowed by a 100 m length having a slope of S02 � 0.02. 
(a) Calculate the normal and critical depths for the two 
channel segments. (b) Given an initial water depth of 1.25 m, 
calculate and graph the water surface profile over the full 
200 m extent of the channel. Also classify the two channel 
segments (M1, A2, etc.).
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x � 0

FIGURE P13–85

13–87  Repeat Problem 13–86 for the case of an initial 
water depth of 0.75 m instead of 1.25 m.

13–88  While the GVF equation cannot be used to pre-
dict a hydraulic jump directly, it can be coupled 

with the ideal hydraulic jump depth ratio equation in order to 
help locate the position at which a jump will occur in a channel. 
Consider a jump created in a wide (Rh � y) horizontal (S0 � 0) 
laboratory flume having a length of 3 m and a Manning 
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水躍

13-89 考慮漸變流方程式：
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value. (a) Calculate the normal and critical depths of the flow 
for the two distinct segments. (b) Numerically solve the grad-
ually varied flow equation over the range 0 � x � 400 m. 
Plot your solution (i.e., y vs. x) and comment about the 
behavior of the water surface.

V0 � 1.6 m/s 

y0

y

x0

S0 � 0.01

FIGURE P13–90

Flow Control and Measurement in Channels

13–92C  What is a sharp-crested weir? On what basis are 
the sharp-crested weirs classified?

13–93C  What is the basic principle of operation of a broad-
crested weir used to measure flow rate through an open 
channel?

13–94C  For sluice gates, how is the discharge coefficient 
Cd defined? What are typical values of Cd for sluice gates 
with free outflow? What is the value of Cd for the idealized 
frictionless flow through the gate?

13–95C  Consider steady frictionless flow over a bump of 
height �z in a horizontal channel of constant width b. Will 
the flow depth y increase, decrease, or remain constant 
as the fluid flows over the bump? Assume the flow to be 
subcritical.

13–96C  Consider the flow of a liquid over a bump during 
subcritical flow in an open channel. The specific energy and 
the flow depth decrease over the bump as the bump height is 
increased. What will the character of flow be when the spe-
cific energy reaches its minimum value? Will the flow become 
supercritical if the bump height is increased even further?

13–97C  Draw a flow depth-specific energy diagram for 
flow through underwater gates, and indicate the flow through 
the gate for cases of (a) frictionless gate, (b) sluice gate 
with free outflow, and (c) sluice gate with drowned outflow 
(including the hydraulic jump back to subcritical flow).

13–98  Consider uniform water flow in a wide rectangular 
channel with a depth of 2 m made of unfinished concrete laid 
on a slope of 0.0022. Determine the flow rate of water per m 
width of channel. Now water flows over a 15-cm-high bump. 
If the water surface over the bump remains flat (no rise or 
drop), determine the change in discharge rate of water per 

FIGURE P13–91

yn1

200 m0 x 200 m

coefficient of 0.009. The supercritical flow under the head gate 
has an initial depth of 0.01 m at x � 0. The tailgate results in an 
overflow depth of 0.08 m at x � 3 m. The per-unit-width flow 
rate is 0.025 m3/s�m. (a) Calculate the critical depth of the flow 
and verify that the initial and final flows are supercritical and 
subcritical, respectively. (b) Determine the location of the 
hydraulic jump. Hint: integrate the GVF equation from x � 0 to 
a “guessed” location of the jump, apply the jump depth-ratio 
equation, and integrate the GVF equation using this new initial 
condition from the jump location to x � 3 m. If you do not 
obtain the desired overflow depth, try a new jump loca-
tion.  Answer: 1.80m

13–89  Consider the gradually varied flow equation,

dy

dx
5

S0 2 Sf

1 2 Fr2

For the case of a wide rectangular channel, show that this can 
be reduced to the following form, which explicitly shows the 
importance of the relationship between y, yn, and yc:

dy

dx
5

S0[1 2 ( yn /y)10/3]

1 2 ( yc /y)3

13–90  Consider gradually varied flow of water in 
a 6-m wide rectangular channel with a flow 

rate of 8.5 m3/s and a Manning coefficient of 0.008. The 
slope of the channel is 0.01, and at the location x � 0, the 
mean flow speed is measured to be 1.6 m/s. Determine the 
classification of the water surface profile, and, by integrating 
the GVF equation numerically, calculate the flow depth y at 
(a) x � 150 m, (b) 300 m, and (c) 600  m.

13–91  Consider gradually varied flow of water in a 
wide rectangular irrigation channel with a per-

unit-width flow rate of 5m3/s�m, a slope of 0.01, and a Man-
ning coefficient of 0.02. The flow is initially at uniform 
depth. At a given location, x � 0, the flow enters a 200m 
length of channel where lack of maintenance has re sulted in 
a channel roughnness of 0.03. Following this stretch of 
channel, the roughness returns to the initial (maintained) 
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 對一個寬矩形渠道的情況，證明此方程式

可以簡化成以下的形式，其可明顯地展示 

y、yn 與 yc 之間關係的重要性：
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value. (a) Calculate the normal and critical depths of the flow 
for the two distinct segments. (b) Numerically solve the grad-
ually varied flow equation over the range 0 � x � 400 m. 
Plot your solution (i.e., y vs. x) and comment about the 
behavior of the water surface.

V0 � 1.6 m/s 

y0

y

x0

S0 � 0.01

FIGURE P13–90

Flow Control and Measurement in Channels

13–92C  What is a sharp-crested weir? On what basis are 
the sharp-crested weirs classified?

13–93C  What is the basic principle of operation of a broad-
crested weir used to measure flow rate through an open 
channel?

13–94C  For sluice gates, how is the discharge coefficient 
Cd defined? What are typical values of Cd for sluice gates 
with free outflow? What is the value of Cd for the idealized 
frictionless flow through the gate?

13–95C  Consider steady frictionless flow over a bump of 
height �z in a horizontal channel of constant width b. Will 
the flow depth y increase, decrease, or remain constant 
as the fluid flows over the bump? Assume the flow to be 
subcritical.

13–96C  Consider the flow of a liquid over a bump during 
subcritical flow in an open channel. The specific energy and 
the flow depth decrease over the bump as the bump height is 
increased. What will the character of flow be when the spe-
cific energy reaches its minimum value? Will the flow become 
supercritical if the bump height is increased even further?

13–97C  Draw a flow depth-specific energy diagram for 
flow through underwater gates, and indicate the flow through 
the gate for cases of (a) frictionless gate, (b) sluice gate 
with free outflow, and (c) sluice gate with drowned outflow 
(including the hydraulic jump back to subcritical flow).

13–98  Consider uniform water flow in a wide rectangular 
channel with a depth of 2 m made of unfinished concrete laid 
on a slope of 0.0022. Determine the flow rate of water per m 
width of channel. Now water flows over a 15-cm-high bump. 
If the water surface over the bump remains flat (no rise or 
drop), determine the change in discharge rate of water per 
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coefficient of 0.009. The supercritical flow under the head gate 
has an initial depth of 0.01 m at x � 0. The tailgate results in an 
overflow depth of 0.08 m at x � 3 m. The per-unit-width flow 
rate is 0.025 m3/s�m. (a) Calculate the critical depth of the flow 
and verify that the initial and final flows are supercritical and 
subcritical, respectively. (b) Determine the location of the 
hydraulic jump. Hint: integrate the GVF equation from x � 0 to 
a “guessed” location of the jump, apply the jump depth-ratio 
equation, and integrate the GVF equation using this new initial 
condition from the jump location to x � 3 m. If you do not 
obtain the desired overflow depth, try a new jump loca-
tion.  Answer: 1.80m

13–89  Consider the gradually varied flow equation,

dy

dx
5

S0 2 Sf

1 2 Fr2

For the case of a wide rectangular channel, show that this can 
be reduced to the following form, which explicitly shows the 
importance of the relationship between y, yn, and yc:

dy

dx
5

S0[1 2 ( yn /y)10/3]

1 2 ( yc /y)3

13–90  Consider gradually varied flow of water in 
a 6-m wide rectangular channel with a flow 

rate of 8.5 m3/s and a Manning coefficient of 0.008. The 
slope of the channel is 0.01, and at the location x � 0, the 
mean flow speed is measured to be 1.6 m/s. Determine the 
classification of the water surface profile, and, by integrating 
the GVF equation numerically, calculate the flow depth y at 
(a) x � 150 m, (b) 300 m, and (c) 600  m.

13–91  Consider gradually varied flow of water in a 
wide rectangular irrigation channel with a per-

unit-width flow rate of 5m3/s�m, a slope of 0.01, and a Man-
ning coefficient of 0.02. The flow is initially at uniform 
depth. At a given location, x � 0, the flow enters a 200m 
length of channel where lack of maintenance has re sulted in 
a channel roughnness of 0.03. Following this stretch of 
channel, the roughness returns to the initial (maintained) 
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13-90 考慮水在一個 6 m 寬的矩形渠道中的漸

變流，其流率為 8.5 m3/s，曼寧係數為 

0.008。渠道的斜率是 0.01，且在 x=0 的

位置，量測到的平均流速是 1.6 m/s。決

定水面形狀的類別，並且藉由數值積分 
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GVF 方程式，計算流動深度在 (a) x=150 

m，(b) 300 m，與 (c) 600 m。

圖 P13-90　
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value. (a) Calculate the normal and critical depths of the flow 
for the two distinct segments. (b) Numerically solve the grad-
ually varied flow equation over the range 0 � x � 400 m. 
Plot your solution (i.e., y vs. x) and comment about the 
behavior of the water surface.

V0 � 1.6 m/s 

y0

y

x0

S0 � 0.01

FIGURE P13–90

Flow Control and Measurement in Channels

13–92C  What is a sharp-crested weir? On what basis are 
the sharp-crested weirs classified?

13–93C  What is the basic principle of operation of a broad-
crested weir used to measure flow rate through an open 
channel?

13–94C  For sluice gates, how is the discharge coefficient 
Cd defined? What are typical values of Cd for sluice gates 
with free outflow? What is the value of Cd for the idealized 
frictionless flow through the gate?

13–95C  Consider steady frictionless flow over a bump of 
height �z in a horizontal channel of constant width b. Will 
the flow depth y increase, decrease, or remain constant 
as the fluid flows over the bump? Assume the flow to be 
subcritical.

13–96C  Consider the flow of a liquid over a bump during 
subcritical flow in an open channel. The specific energy and 
the flow depth decrease over the bump as the bump height is 
increased. What will the character of flow be when the spe-
cific energy reaches its minimum value? Will the flow become 
supercritical if the bump height is increased even further?

13–97C  Draw a flow depth-specific energy diagram for 
flow through underwater gates, and indicate the flow through 
the gate for cases of (a) frictionless gate, (b) sluice gate 
with free outflow, and (c) sluice gate with drowned outflow 
(including the hydraulic jump back to subcritical flow).

13–98  Consider uniform water flow in a wide rectangular 
channel with a depth of 2 m made of unfinished concrete laid 
on a slope of 0.0022. Determine the flow rate of water per m 
width of channel. Now water flows over a 15-cm-high bump. 
If the water surface over the bump remains flat (no rise or 
drop), determine the change in discharge rate of water per 
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coefficient of 0.009. The supercritical flow under the head gate 
has an initial depth of 0.01 m at x � 0. The tailgate results in an 
overflow depth of 0.08 m at x � 3 m. The per-unit-width flow 
rate is 0.025 m3/s�m. (a) Calculate the critical depth of the flow 
and verify that the initial and final flows are supercritical and 
subcritical, respectively. (b) Determine the location of the 
hydraulic jump. Hint: integrate the GVF equation from x � 0 to 
a “guessed” location of the jump, apply the jump depth-ratio 
equation, and integrate the GVF equation using this new initial 
condition from the jump location to x � 3 m. If you do not 
obtain the desired overflow depth, try a new jump loca-
tion.  Answer: 1.80m

13–89  Consider the gradually varied flow equation,

dy

dx
5

S0 2 Sf

1 2 Fr2

For the case of a wide rectangular channel, show that this can 
be reduced to the following form, which explicitly shows the 
importance of the relationship between y, yn, and yc:

dy

dx
5

S0[1 2 ( yn /y)10/3]

1 2 ( yc /y)3

13–90  Consider gradually varied flow of water in 
a 6-m wide rectangular channel with a flow 

rate of 8.5 m3/s and a Manning coefficient of 0.008. The 
slope of the channel is 0.01, and at the location x � 0, the 
mean flow speed is measured to be 1.6 m/s. Determine the 
classification of the water surface profile, and, by integrating 
the GVF equation numerically, calculate the flow depth y at 
(a) x � 150 m, (b) 300 m, and (c) 600  m.

13–91  Consider gradually varied flow of water in a 
wide rectangular irrigation channel with a per-

unit-width flow rate of 5m3/s�m, a slope of 0.01, and a Man-
ning coefficient of 0.02. The flow is initially at uniform 
depth. At a given location, x � 0, the flow enters a 200m 
length of channel where lack of maintenance has re sulted in 
a channel roughnness of 0.03. Following this stretch of 
channel, the roughness returns to the initial (maintained) 
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13-91 考慮水在一個寬矩形灌溉渠道中的漸變

流，其每單位寬度的流率為 5 m3/s ⋅m，

斜率為 0.01，而曼寧係數為 0.02。流動起

始時是在均勻的深度。在一個給定的位

置，x =0，流動進入一個 200 m 長的渠

道，由於缺少維護，導致渠道的粗糙度變

成 0.03，經過這段渠道以後，粗糙度回

復成起始的 (有維護) 值。(a) 為這兩個不

同的流段，計算流動的正常與臨界深度。

(b) 用數值方法求解漸變流方程式，範圍 

0≤x≤400 m。將你的結果畫圖 (即，y 相

對 x) 並評論水面的行為。
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value. (a) Calculate the normal and critical depths of the flow 
for the two distinct segments. (b) Numerically solve the grad-
ually varied flow equation over the range 0 � x � 400 m. 
Plot your solution (i.e., y vs. x) and comment about the 
behavior of the water surface.
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Flow Control and Measurement in Channels

13–92C  What is a sharp-crested weir? On what basis are 
the sharp-crested weirs classified?

13–93C  What is the basic principle of operation of a broad-
crested weir used to measure flow rate through an open 
channel?

13–94C  For sluice gates, how is the discharge coefficient 
Cd defined? What are typical values of Cd for sluice gates 
with free outflow? What is the value of Cd for the idealized 
frictionless flow through the gate?

13–95C  Consider steady frictionless flow over a bump of 
height �z in a horizontal channel of constant width b. Will 
the flow depth y increase, decrease, or remain constant 
as the fluid flows over the bump? Assume the flow to be 
subcritical.

13–96C  Consider the flow of a liquid over a bump during 
subcritical flow in an open channel. The specific energy and 
the flow depth decrease over the bump as the bump height is 
increased. What will the character of flow be when the spe-
cific energy reaches its minimum value? Will the flow become 
supercritical if the bump height is increased even further?

13–97C  Draw a flow depth-specific energy diagram for 
flow through underwater gates, and indicate the flow through 
the gate for cases of (a) frictionless gate, (b) sluice gate 
with free outflow, and (c) sluice gate with drowned outflow 
(including the hydraulic jump back to subcritical flow).

13–98  Consider uniform water flow in a wide rectangular 
channel with a depth of 2 m made of unfinished concrete laid 
on a slope of 0.0022. Determine the flow rate of water per m 
width of channel. Now water flows over a 15-cm-high bump. 
If the water surface over the bump remains flat (no rise or 
drop), determine the change in discharge rate of water per 
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coefficient of 0.009. The supercritical flow under the head gate 
has an initial depth of 0.01 m at x � 0. The tailgate results in an 
overflow depth of 0.08 m at x � 3 m. The per-unit-width flow 
rate is 0.025 m3/s�m. (a) Calculate the critical depth of the flow 
and verify that the initial and final flows are supercritical and 
subcritical, respectively. (b) Determine the location of the 
hydraulic jump. Hint: integrate the GVF equation from x � 0 to 
a “guessed” location of the jump, apply the jump depth-ratio 
equation, and integrate the GVF equation using this new initial 
condition from the jump location to x � 3 m. If you do not 
obtain the desired overflow depth, try a new jump loca-
tion.  Answer: 1.80m

13–89  Consider the gradually varied flow equation,

dy

dx
5

S0 2 Sf

1 2 Fr2

For the case of a wide rectangular channel, show that this can 
be reduced to the following form, which explicitly shows the 
importance of the relationship between y, yn, and yc:

dy

dx
5

S0[1 2 ( yn /y)10/3]

1 2 ( yc /y)3

13–90  Consider gradually varied flow of water in 
a 6-m wide rectangular channel with a flow 

rate of 8.5 m3/s and a Manning coefficient of 0.008. The 
slope of the channel is 0.01, and at the location x � 0, the 
mean flow speed is measured to be 1.6 m/s. Determine the 
classification of the water surface profile, and, by integrating 
the GVF equation numerically, calculate the flow depth y at 
(a) x � 150 m, (b) 300 m, and (c) 600  m.

13–91  Consider gradually varied flow of water in a 
wide rectangular irrigation channel with a per-

unit-width flow rate of 5m3/s�m, a slope of 0.01, and a Man-
ning coefficient of 0.02. The flow is initially at uniform 
depth. At a given location, x � 0, the flow enters a 200m 
length of channel where lack of maintenance has re sulted in 
a channel roughnness of 0.03. Following this stretch of 
channel, the roughness returns to the initial (maintained) 
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渠道中的流動控制與量測

13-92C 什麼是銳緣堰？在什麼基礎上銳緣堰被分

類？

13-93C 寬頂堰被用來量測經過一個明渠的流率的

操作的基本原理是什麼？

13-94C 對一個水閘門，排水係數 Cd 是如何定義

的？水閘門自由排水的 Cd 的典型值是什

麼？什麼是通過此閘門的理想化的無摩擦

流動的 Cd 的值？

13-95C 考慮在一個等寬度 b 的水平渠道中的穩

定無摩擦的流動，通過一個高度 ∆z 的凸

起。當流體流過凸起時，流動深度將會增

加、減小或維持著常數？假設流動是次臨

界的。

13-96C 考慮在一個明渠中液體流過一個凸起的次

臨界流。當凸起高度增加時，凸起上的比

能量與流動深度減小。當比能量達到其最

小值時，流動的特性會是什麼？若凸起高

度再被增加時，流動是否會變成超臨界

的？

13-97C 為流過底流閘門的水流畫一個流動深度—

比能量圖，並指示通過閘門的流動。考慮

以下情形：(a) 無摩擦閘門，(b) 有自由出

口的水閘門，與 (c) 有沉沒出口的水閘門 

(包括水躍變成次臨界流)。

13-98 考慮在一個寬的矩形渠道中的均勻水流，

其深度為 2 m，是由粗製混凝土製成，其

底面斜率為 0.0022。試決定每 m 渠道寬

度的水流率。現在水流過一個 15 cm 高的

凸起。如果在凸起上的水面維持平的 (沒

有上升或下降)，試決定每米渠道寬度的

排水率變化。(提示：探討凸起上平直的

水面物理上是否可能。)

13-99 在一個寬渠道中流動的水流遭遇到在渠道

底部的一個 22 cm 高的凸起。如果在凸起

之前的水流深度是 1.2 m 且速度是 2.5 m/s，

決定凸起上的流動是否阻塞了，並討論

之。

圖 P13-99　
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meter width of the channel. (Hint: Investigate if a flat surface 
over the bump is physically possible.)

13–99  Water flowing in a wide channel encounters a 
22-cm-high bump at the bottom of the channel. If the flow 
depth is 1.2 m and the velocity is 2.5 m/s before the bump, 
determine if the flow is choked over the bump, and discuss.

not to exceed 1.5 m. Determine the appropriate height of 
the weir.

13–103  The flow rate of water in a 10-m-wide horizontal 
channel is being measured using a 1.3-m-high sharp-crested 
rectangular weir that spans across the channel. If the water 
depth upstream is 3.4 m, determine the flow rate of water.  
Answer: 66.8 m3/s

a  1 m

y2  3 m

y1  12 m

FIGURE P13–101

V1 � 2.5 m/s

y1 � 1.2 m y2
�zb � 0.22 m

FIGURE P13–99

13–104  Repeat Prob. 13–103 for the case of a weir height 
of 1.6 m.

13–105  Water flows over a 2-m-high sharp-crested rectan-
gular weir. The flow depth upstream of the weir is 3 m, and 
water is discharged from the weir into an unfinished-concrete 
channel of equal width where uniform-flow conditions are 
established. If no hydraulic jump is to occur in the down-
stream flow, determine the maximum slope of the down-
stream channel.

13–106  Water is to be discharged from an 8-m-deep lake 
into a channel through a sluice gate with a 5-m  wide and 
0.6-m-high opening at the bottom. If the flow depth down-
stream from the gate is measured to be 4 m, determine the 
rate of discharge through the gate.

13–107  Consider water flow through a wide channel at 
a flow depth of 2.5 m. Now water flows through a sluice 
gate with a 0.3-m-high opening, and the freely discharged 
outflow subsequently undergoes a hydraulic jump. Disre-
garding any losses associated with the sluice gate itself, 
determine the flow depth and velocities before and after 
the jump, and the fraction of mechanical energy dissipated 
during the jump.

13–108  The flow rate of water flowing in a 5-m-wide 
channel is to be measured with a sharp-crested triangular 
weir 0.5  m above the channel bottom with a notch angle 
of 80�. If the flow depth upstream from the weir is 1.5 m, 
determine the flow rate of water through the channel. Take 
the weir discharge coefficient to be 0.60.  Answer: 1.19 m3/s

V1

Sharp-crested
rectangular weir

y1  3.4 m

Pw  1.3 m

FIGURE P13–103
13–100  Consider the uniform flow of water in a wide chan-
nel with a velocity of 8 m/s and flow depth of 0.8 m. Now 
water flows over a 30-cm-high bump. Determine the change 
(increase or decrease) in the water surface level over the 
bump. Also determine if the flow over the bump is sub- or 
supercritical.

13–101  Water is released from a 12-m-deep reservoir into a 
6-m-wide open channel through a sluice gate with a 1-m-high 
opening at the channel bottom. If the flow depth downstream 
from the gate is measured to be 3 m, determine the rate of 
discharge through the gate.

13–102  A full-width sharp-crested weir is to be used to 
measure the flow rate of water in a 2-m-wide rectangular 
channel. The maximum flow rate through the channel 
is 5  m3/s, and the flow depth upstream from the weir is 
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13-100 考慮水在一個寬渠道中的均勻流動，其速

度為 8 m/s，流動深度為 0.8 m。現在水流

過一個 30 cm 高的凸起。決定凸起上面水

面高度的變化 (增加或減小)，同時決定凸

起上的流動是次臨界的或超臨界的。

13-101 水從一個 12 m 深的水庫進入釋出進入一

個 6 m 寬的明渠中，流動經過一個水閘門

在渠道底部的一個 1 m 高的開口。如果閘

門下游的流動深度經量測到為 3 m，試決

定經過閘門的排水率。

圖 P13-101　

780
OPEN-CHANNEL FLOW

meter width of the channel. (Hint: Investigate if a flat surface 
over the bump is physically possible.)

13–99  Water flowing in a wide channel encounters a 
22-cm-high bump at the bottom of the channel. If the flow 
depth is 1.2 m and the velocity is 2.5 m/s before the bump, 
determine if the flow is choked over the bump, and discuss.

not to exceed 1.5 m. Determine the appropriate height of 
the weir.

13–103  The flow rate of water in a 10-m-wide horizontal 
channel is being measured using a 1.3-m-high sharp-crested 
rectangular weir that spans across the channel. If the water 
depth upstream is 3.4 m, determine the flow rate of water.  
Answer: 66.8 m3/s

a  1 m

y2  3 m

y1  12 m

FIGURE P13–101

V1 � 2.5 m/s

y1 � 1.2 m y2
�zb � 0.22 m

FIGURE P13–99

13–104  Repeat Prob. 13–103 for the case of a weir height 
of 1.6 m.

13–105  Water flows over a 2-m-high sharp-crested rectan-
gular weir. The flow depth upstream of the weir is 3 m, and 
water is discharged from the weir into an unfinished-concrete 
channel of equal width where uniform-flow conditions are 
established. If no hydraulic jump is to occur in the down-
stream flow, determine the maximum slope of the down-
stream channel.

13–106  Water is to be discharged from an 8-m-deep lake 
into a channel through a sluice gate with a 5-m  wide and 
0.6-m-high opening at the bottom. If the flow depth down-
stream from the gate is measured to be 4 m, determine the 
rate of discharge through the gate.

13–107  Consider water flow through a wide channel at 
a flow depth of 2.5 m. Now water flows through a sluice 
gate with a 0.3-m-high opening, and the freely discharged 
outflow subsequently undergoes a hydraulic jump. Disre-
garding any losses associated with the sluice gate itself, 
determine the flow depth and velocities before and after 
the jump, and the fraction of mechanical energy dissipated 
during the jump.

13–108  The flow rate of water flowing in a 5-m-wide 
channel is to be measured with a sharp-crested triangular 
weir 0.5  m above the channel bottom with a notch angle 
of 80�. If the flow depth upstream from the weir is 1.5 m, 
determine the flow rate of water through the channel. Take 
the weir discharge coefficient to be 0.60.  Answer: 1.19 m3/s
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FIGURE P13–103
13–100  Consider the uniform flow of water in a wide chan-
nel with a velocity of 8 m/s and flow depth of 0.8 m. Now 
water flows over a 30-cm-high bump. Determine the change 
(increase or decrease) in the water surface level over the 
bump. Also determine if the flow over the bump is sub- or 
supercritical.

13–101  Water is released from a 12-m-deep reservoir into a 
6-m-wide open channel through a sluice gate with a 1-m-high 
opening at the channel bottom. If the flow depth downstream 
from the gate is measured to be 3 m, determine the rate of 
discharge through the gate.

13–102  A full-width sharp-crested weir is to be used to 
measure the flow rate of water in a 2-m-wide rectangular 
channel. The maximum flow rate through the channel 
is 5  m3/s, and the flow depth upstream from the weir is 
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水閘門

13-102 一個全寬度的銳緣堰要被用來量測在一個 

2 m 寬的矩形渠道中的水流率。通過此渠

道的最大流率是 5 m3/s，且在堰上游的流

動深度不能超過 1.5 m。試決定堰的合適

高度。

13-103 在一個 10 m 寬的水平渠道中的水流率要

使用一個跨過渠道的 1.3 m高的銳緣矩

形堰來量測。如果上游的水流深度是 3.4 

m，試求水流率。(Answer: 66.8 m3/s)

圖 P13-103　

780
OPEN-CHANNEL FLOW

meter width of the channel. (Hint: Investigate if a flat surface 
over the bump is physically possible.)

13–99  Water flowing in a wide channel encounters a 
22-cm-high bump at the bottom of the channel. If the flow 
depth is 1.2 m and the velocity is 2.5 m/s before the bump, 
determine if the flow is choked over the bump, and discuss.

not to exceed 1.5 m. Determine the appropriate height of 
the weir.

13–103  The flow rate of water in a 10-m-wide horizontal 
channel is being measured using a 1.3-m-high sharp-crested 
rectangular weir that spans across the channel. If the water 
depth upstream is 3.4 m, determine the flow rate of water.  
Answer: 66.8 m3/s

a  1 m

y2  3 m

y1  12 m

FIGURE P13–101

V1 � 2.5 m/s

y1 � 1.2 m y2
�zb � 0.22 m

FIGURE P13–99

13–104  Repeat Prob. 13–103 for the case of a weir height 
of 1.6 m.

13–105  Water flows over a 2-m-high sharp-crested rectan-
gular weir. The flow depth upstream of the weir is 3 m, and 
water is discharged from the weir into an unfinished-concrete 
channel of equal width where uniform-flow conditions are 
established. If no hydraulic jump is to occur in the down-
stream flow, determine the maximum slope of the down-
stream channel.

13–106  Water is to be discharged from an 8-m-deep lake 
into a channel through a sluice gate with a 5-m  wide and 
0.6-m-high opening at the bottom. If the flow depth down-
stream from the gate is measured to be 4 m, determine the 
rate of discharge through the gate.

13–107  Consider water flow through a wide channel at 
a flow depth of 2.5 m. Now water flows through a sluice 
gate with a 0.3-m-high opening, and the freely discharged 
outflow subsequently undergoes a hydraulic jump. Disre-
garding any losses associated with the sluice gate itself, 
determine the flow depth and velocities before and after 
the jump, and the fraction of mechanical energy dissipated 
during the jump.

13–108  The flow rate of water flowing in a 5-m-wide 
channel is to be measured with a sharp-crested triangular 
weir 0.5  m above the channel bottom with a notch angle 
of 80�. If the flow depth upstream from the weir is 1.5 m, 
determine the flow rate of water through the channel. Take 
the weir discharge coefficient to be 0.60.  Answer: 1.19 m3/s

V1

Sharp-crested
rectangular weir

y1  3.4 m

Pw  1.3 m

FIGURE P13–103
13–100  Consider the uniform flow of water in a wide chan-
nel with a velocity of 8 m/s and flow depth of 0.8 m. Now 
water flows over a 30-cm-high bump. Determine the change 
(increase or decrease) in the water surface level over the 
bump. Also determine if the flow over the bump is sub- or 
supercritical.

13–101  Water is released from a 12-m-deep reservoir into a 
6-m-wide open channel through a sluice gate with a 1-m-high 
opening at the channel bottom. If the flow depth downstream 
from the gate is measured to be 3 m, determine the rate of 
discharge through the gate.

13–102  A full-width sharp-crested weir is to be used to 
measure the flow rate of water in a 2-m-wide rectangular 
channel. The maximum flow rate through the channel 
is 5  m3/s, and the flow depth upstream from the weir is 

725-786_cengel_ch13.indd   780 7/2/13   7:01 PM

銳緣矩形堰

13-104 對一個 1.6 m 高的堰的情況，重做習題 

13-103。

13-105 水流過一個 2 m 高的銳緣矩形堰。堰上游

的水流深度是 3 m，且從堰所排出的水流

進一個相同寬度的粗製混凝土渠道中，並

且在其中建立均勻流條件。如果在下游的

流動中沒有水躍發生，試決定下坡渠道的

最大斜率。

13-106 水要從一個 8 m 深的湖泊經過一個底部有 

5 m 寬，但 0.6 m 高的開口的水閘門排水

進入一個渠道。如果閘門下游的水流深度

經量測為 4 m，試決定經過此閘門的排水

率。

13-107 考慮水流通過一個寬渠道，流動深度為 

2.5 m。現在水流過一個具有 0.3 m 高開

口的水閘門，並且其自由地向外排出的水

流隨後經歷一個水躍。忽略任何與水閘門

本身有關的損失，試求水躍前後的流動深

度與流速，以及在水躍中耗散的機械能的

比例。

13-108 水流過一個 5 m 寬的渠道的流率要用一個

高於渠道底部 0.5 m 的銳緣三角形堰來量

測，其缺口角度為 80°。如果堰上游的流

動深度是 1.5 m，試決定水流通過渠道的

流率，取堰的排水係數為 0.60。  

(Answer: 1.19 m3/s)

圖 P13-108　
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flows over a 15-cm-high bump. If the flow over the bump is 
exactly critical (Fr � 1), determine the flow rate and the flow 
depth over the bump per m width.  Answers: 20.3 m3/s, 3.48 m

13–114  Consider water flow over a 0.80-m-high sufficiently 
long broad-crested weir. If the minimum flow depth above the 
weir is measured to be 0.50 m, determine the flow rate per 
meter width of channel and the flow depth upstream of the weir.

13–115  The flow rate of water through a 8-m-wide (into 
the paper) channel is controlled by a sluice gate. If the flow 
depths are measured to be 0.9 and 0.25 m upstream and 
downstream from the gates, respectively, determine the flow 
rate and the Froude number downstream from the gate.

13–109  Repeat Prob. 13–108 for an upstream flow depth 
of 0.90 m.

13–110  A sharp-crested triangular weir with a notch angle 
of 100� is used to measure the discharge rate of water from a 
large lake into a spillway. If a weir with half the notch angle 
(� � 50�) is used instead, determine the percent reduction 
in the flow rate. Assume the water depth in the lake and the 
weir discharge coefficient remain unchanged.

13–111  A 0.80-m-high broad-crested weir is used to mea-
sure the flow rate of water in a 5-m-wide rectangular chan-
nel. The flow depth well upstream from the weir is 1.8 m. 
Determine the flow rate through the channel and the mini-
mum flow depth above the weir.

Review Problems
13–116  Water flows in a canal at an average velocity of 
4 m/s. Determine if the flow is subcritical or supercritical for 
flow depths of (a) 0.2 m, (b) 2 m, and (c) 1.63 m.

13–117  A trapezoidal channel with a bottom width of 4 m 
and a side slope of 45� discharges water at a rate of 18 m3/s. 
If the flow depth is 0.6 m, determine if the flow is subcritical 
or supercritical.

13–118  A 5-m-wide rectangular channel lined with 
finished concrete is to be designed to trans-

port water to a distance of 1 km at a rate of 12 m3/s. Using 
EES (or other) software, investigate the effect of bottom 
slope on flow depth (and thus on the required channel 
height). Let the bottom angle vary from 0.5 to 10� in incre-
ments of 0.5�. Tabulate and plot the flow depth against the 
bottom angle, and discuss the results.

13–119  Repeat Prob. 13–118 for a trapezoidal chan-
nel that has a base width of 5  m and a side 

surface angle of 45�.

13–120  A trapezoidal channel with brick lining has a bottom 
slope of 0.001 and a base width of 4 m, and the side surfaces 
are angled 25� from the horizontal, as shown in Fig. P13–120. 
If the normal depth is measured to be 1.5 m, estimate the flow 
rate of water through the channel.  Answer: 22.5 m3/s

0.5 m

5 m

1 m 80°

FIGURE P13–108

1.8 m

0.80 m

FIGURE P13–111

y1 y2

zb  15 cm

� 0.0022

FIGURE P13–113

13–112  Repeat Prob. 13–111 for an upstream flow depth 
of 1.4 m.

13–113  Consider uniform water flow in a wide channel made 
of unfinished concrete laid on a slope of 0.0022. Now water 

Sluice gate

y2  0.25 m

y1  0.90 m

FIGURE P13–115
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上游自由
表面

堰板

13-109 若上游的流動深度為 0.90 m，重做習題 

13-108。

13-110 一個銳緣三角形堰的缺口角度為 100° 要

被用來量測從一個大湖進入一個洩洪道的

排水率。如果改用一個只有一半缺口角度 
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(u =50°) 的堰來代替，試決定流率減小的

百分比。假設湖中的水深與堰的排水係數

維持不變。

13-111 一個 0.80 m 高的寬頂堰要被用來量測水

在一個 5 m 寬的矩形渠道中的流率。在堰

足夠上游處的流動深度是 1.80 m。試決

定通過渠道的流率及堰上方的最小流動深

度。

圖 P13-111　
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flows over a 15-cm-high bump. If the flow over the bump is 
exactly critical (Fr � 1), determine the flow rate and the flow 
depth over the bump per m width.  Answers: 20.3 m3/s, 3.48 m

13–114  Consider water flow over a 0.80-m-high sufficiently 
long broad-crested weir. If the minimum flow depth above the 
weir is measured to be 0.50 m, determine the flow rate per 
meter width of channel and the flow depth upstream of the weir.

13–115  The flow rate of water through a 8-m-wide (into 
the paper) channel is controlled by a sluice gate. If the flow 
depths are measured to be 0.9 and 0.25 m upstream and 
downstream from the gates, respectively, determine the flow 
rate and the Froude number downstream from the gate.

13–109  Repeat Prob. 13–108 for an upstream flow depth 
of 0.90 m.

13–110  A sharp-crested triangular weir with a notch angle 
of 100� is used to measure the discharge rate of water from a 
large lake into a spillway. If a weir with half the notch angle 
(� � 50�) is used instead, determine the percent reduction 
in the flow rate. Assume the water depth in the lake and the 
weir discharge coefficient remain unchanged.

13–111  A 0.80-m-high broad-crested weir is used to mea-
sure the flow rate of water in a 5-m-wide rectangular chan-
nel. The flow depth well upstream from the weir is 1.8 m. 
Determine the flow rate through the channel and the mini-
mum flow depth above the weir.

Review Problems
13–116  Water flows in a canal at an average velocity of 
4 m/s. Determine if the flow is subcritical or supercritical for 
flow depths of (a) 0.2 m, (b) 2 m, and (c) 1.63 m.

13–117  A trapezoidal channel with a bottom width of 4 m 
and a side slope of 45� discharges water at a rate of 18 m3/s. 
If the flow depth is 0.6 m, determine if the flow is subcritical 
or supercritical.

13–118  A 5-m-wide rectangular channel lined with 
finished concrete is to be designed to trans-

port water to a distance of 1 km at a rate of 12 m3/s. Using 
EES (or other) software, investigate the effect of bottom 
slope on flow depth (and thus on the required channel 
height). Let the bottom angle vary from 0.5 to 10� in incre-
ments of 0.5�. Tabulate and plot the flow depth against the 
bottom angle, and discuss the results.

13–119  Repeat Prob. 13–118 for a trapezoidal chan-
nel that has a base width of 5  m and a side 

surface angle of 45�.

13–120  A trapezoidal channel with brick lining has a bottom 
slope of 0.001 and a base width of 4 m, and the side surfaces 
are angled 25� from the horizontal, as shown in Fig. P13–120. 
If the normal depth is measured to be 1.5 m, estimate the flow 
rate of water through the channel.  Answer: 22.5 m3/s

0.5 m

5 m

1 m 80°

FIGURE P13–108

1.8 m

0.80 m

FIGURE P13–111

y1 y2

zb  15 cm

� 0.0022

FIGURE P13–113

13–112  Repeat Prob. 13–111 for an upstream flow depth 
of 1.4 m.

13–113  Consider uniform water flow in a wide channel made 
of unfinished concrete laid on a slope of 0.0022. Now water 

Sluice gate

y2  0.25 m

y1  0.90 m

FIGURE P13–115
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寬頂堰

排水

13-112 對上游流動深度  1.4 m，重做習題  13-

111。

13-113 考慮在一個粗製混凝土製造的寬渠道的均

勻水流，其斜率為 0.0022。現在水流過

一個 15 cm 高的凸起。若凸起上方的流動

正好是臨界的 (Fr=1)，試決定凸起上方每 

m 寬度的流率與流動深度。(Answer: 20.3 

m3/s, 3.48 m)

圖 P13-113　
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flows over a 15-cm-high bump. If the flow over the bump is 
exactly critical (Fr � 1), determine the flow rate and the flow 
depth over the bump per m width.  Answers: 20.3 m3/s, 3.48 m

13–114  Consider water flow over a 0.80-m-high sufficiently 
long broad-crested weir. If the minimum flow depth above the 
weir is measured to be 0.50 m, determine the flow rate per 
meter width of channel and the flow depth upstream of the weir.

13–115  The flow rate of water through a 8-m-wide (into 
the paper) channel is controlled by a sluice gate. If the flow 
depths are measured to be 0.9 and 0.25 m upstream and 
downstream from the gates, respectively, determine the flow 
rate and the Froude number downstream from the gate.

13–109  Repeat Prob. 13–108 for an upstream flow depth 
of 0.90 m.

13–110  A sharp-crested triangular weir with a notch angle 
of 100� is used to measure the discharge rate of water from a 
large lake into a spillway. If a weir with half the notch angle 
(� � 50�) is used instead, determine the percent reduction 
in the flow rate. Assume the water depth in the lake and the 
weir discharge coefficient remain unchanged.

13–111  A 0.80-m-high broad-crested weir is used to mea-
sure the flow rate of water in a 5-m-wide rectangular chan-
nel. The flow depth well upstream from the weir is 1.8 m. 
Determine the flow rate through the channel and the mini-
mum flow depth above the weir.

Review Problems
13–116  Water flows in a canal at an average velocity of 
4 m/s. Determine if the flow is subcritical or supercritical for 
flow depths of (a) 0.2 m, (b) 2 m, and (c) 1.63 m.

13–117  A trapezoidal channel with a bottom width of 4 m 
and a side slope of 45� discharges water at a rate of 18 m3/s. 
If the flow depth is 0.6 m, determine if the flow is subcritical 
or supercritical.

13–118  A 5-m-wide rectangular channel lined with 
finished concrete is to be designed to trans-

port water to a distance of 1 km at a rate of 12 m3/s. Using 
EES (or other) software, investigate the effect of bottom 
slope on flow depth (and thus on the required channel 
height). Let the bottom angle vary from 0.5 to 10� in incre-
ments of 0.5�. Tabulate and plot the flow depth against the 
bottom angle, and discuss the results.

13–119  Repeat Prob. 13–118 for a trapezoidal chan-
nel that has a base width of 5  m and a side 

surface angle of 45�.

13–120  A trapezoidal channel with brick lining has a bottom 
slope of 0.001 and a base width of 4 m, and the side surfaces 
are angled 25� from the horizontal, as shown in Fig. P13–120. 
If the normal depth is measured to be 1.5 m, estimate the flow 
rate of water through the channel.  Answer: 22.5 m3/s

0.5 m

5 m

1 m 80°

FIGURE P13–108

1.8 m

0.80 m

FIGURE P13–111

y1 y2

zb  15 cm

� 0.0022

FIGURE P13–113

13–112  Repeat Prob. 13–111 for an upstream flow depth 
of 1.4 m.

13–113  Consider uniform water flow in a wide channel made 
of unfinished concrete laid on a slope of 0.0022. Now water 

Sluice gate

y2  0.25 m

y1  0.90 m

FIGURE P13–115
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凸起物

斜率

13-114 考慮水流過一個 0.80 m 高，足夠長的寬

頂堰。如果堰上方量測到的最小流動深度

是 0.50 m，試決定每 m 渠道寬度的流率

與堰上游的流動深度。

13-115 水流通過一個 8 m 寬 (進入紙面方向) 的

渠道的流率被一個水閘門控制。若閘門上

游與下游量測到的流動深度分別是 0.9 與 

0.25 m，試決定閘門下游的流率與福勞

數。

圖 P13-115　
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flows over a 15-cm-high bump. If the flow over the bump is 
exactly critical (Fr � 1), determine the flow rate and the flow 
depth over the bump per m width.  Answers: 20.3 m3/s, 3.48 m

13–114  Consider water flow over a 0.80-m-high sufficiently 
long broad-crested weir. If the minimum flow depth above the 
weir is measured to be 0.50 m, determine the flow rate per 
meter width of channel and the flow depth upstream of the weir.

13–115  The flow rate of water through a 8-m-wide (into 
the paper) channel is controlled by a sluice gate. If the flow 
depths are measured to be 0.9 and 0.25 m upstream and 
downstream from the gates, respectively, determine the flow 
rate and the Froude number downstream from the gate.

13–109  Repeat Prob. 13–108 for an upstream flow depth 
of 0.90 m.

13–110  A sharp-crested triangular weir with a notch angle 
of 100� is used to measure the discharge rate of water from a 
large lake into a spillway. If a weir with half the notch angle 
(� � 50�) is used instead, determine the percent reduction 
in the flow rate. Assume the water depth in the lake and the 
weir discharge coefficient remain unchanged.

13–111  A 0.80-m-high broad-crested weir is used to mea-
sure the flow rate of water in a 5-m-wide rectangular chan-
nel. The flow depth well upstream from the weir is 1.8 m. 
Determine the flow rate through the channel and the mini-
mum flow depth above the weir.

Review Problems
13–116  Water flows in a canal at an average velocity of 
4 m/s. Determine if the flow is subcritical or supercritical for 
flow depths of (a) 0.2 m, (b) 2 m, and (c) 1.63 m.

13–117  A trapezoidal channel with a bottom width of 4 m 
and a side slope of 45� discharges water at a rate of 18 m3/s. 
If the flow depth is 0.6 m, determine if the flow is subcritical 
or supercritical.

13–118  A 5-m-wide rectangular channel lined with 
finished concrete is to be designed to trans-

port water to a distance of 1 km at a rate of 12 m3/s. Using 
EES (or other) software, investigate the effect of bottom 
slope on flow depth (and thus on the required channel 
height). Let the bottom angle vary from 0.5 to 10� in incre-
ments of 0.5�. Tabulate and plot the flow depth against the 
bottom angle, and discuss the results.

13–119  Repeat Prob. 13–118 for a trapezoidal chan-
nel that has a base width of 5  m and a side 

surface angle of 45�.

13–120  A trapezoidal channel with brick lining has a bottom 
slope of 0.001 and a base width of 4 m, and the side surfaces 
are angled 25� from the horizontal, as shown in Fig. P13–120. 
If the normal depth is measured to be 1.5 m, estimate the flow 
rate of water through the channel.  Answer: 22.5 m3/s

0.5 m

5 m

1 m 80°

FIGURE P13–108

1.8 m

0.80 m

FIGURE P13–111

y1 y2

zb  15 cm

� 0.0022

FIGURE P13–113

13–112  Repeat Prob. 13–111 for an upstream flow depth 
of 1.4 m.

13–113  Consider uniform water flow in a wide channel made 
of unfinished concrete laid on a slope of 0.0022. Now water 

Sluice gate

y2  0.25 m

y1  0.90 m

FIGURE P13–115
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水閘門

複習題

13-116 水流以平均速度 4 m/s 在一條運河中流

動。對流動深度：(a) 0.2 m，(b) 2 m，與 

(c) 1.63 m，決定流動是次臨界或超臨界

的？

13-117 一個梯形渠道，底面寬度 4 m，邊牆斜率

為 45°，以 18 m3/s 的流率排水。若流動

深度為 0.6 m，試決定流動是次臨界或超

臨界的？

13-118 一個 5 m 寬的矩形渠道以精製混凝土鋪

面，要設計來輸送水流，流率為 12 m3/s，

傳輸距離 1 km。使用 EES (或其它) 軟

體，探討底面斜率對流動深度  (因此對

需要的渠道高度) 的影響。令底面角度從 

0.5° 變化到 10°，增量為 0.5°。將流動深

度對應底面角度列表與作圖，並討論結

果。

13-119 對一個底面寬度 5 m 與邊牆角度 45° 的梯

形渠道，重做習題 13-118。

13-120 一個以磚塊鋪面的梯形渠道，底面斜率為 

0.001，底面寬度 4 m，而邊牆與水平面的

角度是 25°，如圖 P13-120 所示。若量測

到的正常深度是 1.5 m，試估計水經過此

渠道的流率。(Answer: 22.5 m3/s)
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圖 P13-120　
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FIGURE P13–128

6 m

1 m

1 m

10 m

n2 � 0.075
n1 � 0.022

FIGURE P13–126

13–121  Water flows through a 2.2-m-wide rectangular chan-
nel with a Manning coefficient of n � 0.012. If the water is 0.9 m 
deep and the bottom slope of the channel is 0.6�, determine the 
rate of discharge of the channel in uniform flow.

13–122  A rectangular channel with a bottom width of 7 m 
discharges water at a rate of 45 m3/s. Determine the flow 
depth below which the flow is supercritical.  Answer: 1.62 m

13–123  Consider a 1-m-internal-diameter water channel 
made of finished concrete (n � 0.012). The channel slope is 
0.002. For a flow depth of 0.32 m at the center, determine the 
flow rate of water through the channel.  Answer: 0.258 m3/s

13–126  Water flows in a channel whose bottom slope is 
0.5� and whose cross section is as shown in Fig. P13–126. 
The dimensions and the Manning coefficients for the sur-
faces of different subsections are also given on the figure. 
Determine the flow rate through the channel and the effective 
Manning coefficient for the channel.

25˚ 25˚

4 m

1.5 m

FIGURE P13–120

0.32 m

R � 0.5 m

FIGURE P13–123

y

x

H � 0.5 m

b � 0.4 m

y � cx2

FIGURE P13–125

13–127  Consider two identical channels, one rectangular of 
bottom width b and one circular of diameter D, with identi-
cal flow rates, bottom slopes, and surface linings. If the flow 
height in the rectangular channel is also b and the circular 
channel is flowing half-full, determine the relation between 
b and D.

13–128  Consider water flow through a V-shaped channel. 
Determine the angle � the channel makes from the horizontal 
for which the flow is most efficient.

13–124  Reconsider Prob. 13–123. By varying the 
flow depth-to-radius ratio y/R from 0.1 to 1.9 

while holding the flow area constant and evaluating the flow 
rate, show that the best cross section for flow through a circu-
lar channel occurs when the channel is half-full. Tabulate and 
plot your results.

13–125  Consider the flow of water through a parabolic 
notch shown in Fig. P13–125. Develop a relation for the 
flow rate, and calculate its numerical value for the ideal case 
in which the flow velocity is given by Torricelli’s equation 
V 5 !2g(H 2 y). Answer: 0.123 m3/s

13–129  The flow rate of water in a 6-m-wide rectangular 
channel is to be measured using a 1.1-m-high sharp-crested 
rectangular weir that spans across the channel. If the head 
above the weir crest is 0.60 m upstream from the weir, deter-
mine the flow rate of water.

13–130  A rectangular channel with unfinished concrete 
surfaces is to be built to discharge water uniformly at a rate of 
6 m3/s. For the case of best cross section, determine 
the bottom width of the channel if the available vertical 
drop is (a) 1 and (b) 2 m per km.  Answers: (a) 2.65 m, 
(b) 2.32 m

13–131  Repeat Prob. 13–130 for the case of a trapezoidal 
channel of best cross section.

13–132  In practice, the V-notch is commonly used to 
measure flow rate in open channels. Using the 

idealized Torricelli’s equation V 5 !2g(H 2 y) for velocity, 
develop a relation for the flow rate through the V-notch in 
terms of the angle �. Also, show the variation of the flow rate 
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13-121 水流過一個 2.2 m 寬的矩形渠道，其曼寧

係數為 n=0.012。若水是 0.9 m 深且渠道

的底面斜率是 0.6°。試求此渠道在均勻流

時的排水率。

13-122 一個底面寬度 7 m 的矩形渠道以流率 45 

m3/s 排水，試決定超臨界流動的最高流

動深度。(Answer: 1.62 m)

13-123 考慮一個由精製混凝土 (n=0.012) 製成的

水流渠道，內部直徑 1 m，斜率 0.002。

若中心線的水流深度是 0.32 m，試求經過

此渠道的水流率。(Answer: 0.258 m3/s)

圖 P13-123　
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13–121  Water flows through a 2.2-m-wide rectangular chan-
nel with a Manning coefficient of n � 0.012. If the water is 0.9 m 
deep and the bottom slope of the channel is 0.6�, determine the 
rate of discharge of the channel in uniform flow.

13–122  A rectangular channel with a bottom width of 7 m 
discharges water at a rate of 45 m3/s. Determine the flow 
depth below which the flow is supercritical.  Answer: 1.62 m

13–123  Consider a 1-m-internal-diameter water channel 
made of finished concrete (n � 0.012). The channel slope is 
0.002. For a flow depth of 0.32 m at the center, determine the 
flow rate of water through the channel.  Answer: 0.258 m3/s

13–126  Water flows in a channel whose bottom slope is 
0.5� and whose cross section is as shown in Fig. P13–126. 
The dimensions and the Manning coefficients for the sur-
faces of different subsections are also given on the figure. 
Determine the flow rate through the channel and the effective 
Manning coefficient for the channel.
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13–127  Consider two identical channels, one rectangular of 
bottom width b and one circular of diameter D, with identi-
cal flow rates, bottom slopes, and surface linings. If the flow 
height in the rectangular channel is also b and the circular 
channel is flowing half-full, determine the relation between 
b and D.

13–128  Consider water flow through a V-shaped channel. 
Determine the angle � the channel makes from the horizontal 
for which the flow is most efficient.

13–124  Reconsider Prob. 13–123. By varying the 
flow depth-to-radius ratio y/R from 0.1 to 1.9 

while holding the flow area constant and evaluating the flow 
rate, show that the best cross section for flow through a circu-
lar channel occurs when the channel is half-full. Tabulate and 
plot your results.

13–125  Consider the flow of water through a parabolic 
notch shown in Fig. P13–125. Develop a relation for the 
flow rate, and calculate its numerical value for the ideal case 
in which the flow velocity is given by Torricelli’s equation 
V 5 !2g(H 2 y). Answer: 0.123 m3/s

13–129  The flow rate of water in a 6-m-wide rectangular 
channel is to be measured using a 1.1-m-high sharp-crested 
rectangular weir that spans across the channel. If the head 
above the weir crest is 0.60 m upstream from the weir, deter-
mine the flow rate of water.

13–130  A rectangular channel with unfinished concrete 
surfaces is to be built to discharge water uniformly at a rate of 
6 m3/s. For the case of best cross section, determine 
the bottom width of the channel if the available vertical 
drop is (a) 1 and (b) 2 m per km.  Answers: (a) 2.65 m, 
(b) 2.32 m

13–131  Repeat Prob. 13–130 for the case of a trapezoidal 
channel of best cross section.

13–132  In practice, the V-notch is commonly used to 
measure flow rate in open channels. Using the 

idealized Torricelli’s equation V 5 !2g(H 2 y) for velocity, 
develop a relation for the flow rate through the V-notch in 
terms of the angle �. Also, show the variation of the flow rate 
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13-124 重新考慮習題 13-123。當維持流動面積

為常數時，藉著改變流動深度對半徑的比

值 y/R 從 0.1 到 1.9 來評估流率。證明對

通過圓形渠道的流動，最好的截面是當渠

道是半滿時。將你的結果列表並作圖。

13-125 考慮水流通過一個拋物線形缺口，如圖 

P13-125 所示。為流率推導出一個關係

式，並對理想的情況，其速度由托利切利 

(Torricellis) 方程式 
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13–121  Water flows through a 2.2-m-wide rectangular chan-
nel with a Manning coefficient of n � 0.012. If the water is 0.9 m 
deep and the bottom slope of the channel is 0.6�, determine the 
rate of discharge of the channel in uniform flow.

13–122  A rectangular channel with a bottom width of 7 m 
discharges water at a rate of 45 m3/s. Determine the flow 
depth below which the flow is supercritical.  Answer: 1.62 m

13–123  Consider a 1-m-internal-diameter water channel 
made of finished concrete (n � 0.012). The channel slope is 
0.002. For a flow depth of 0.32 m at the center, determine the 
flow rate of water through the channel.  Answer: 0.258 m3/s

13–126  Water flows in a channel whose bottom slope is 
0.5� and whose cross section is as shown in Fig. P13–126. 
The dimensions and the Manning coefficients for the sur-
faces of different subsections are also given on the figure. 
Determine the flow rate through the channel and the effective 
Manning coefficient for the channel.
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13–127  Consider two identical channels, one rectangular of 
bottom width b and one circular of diameter D, with identi-
cal flow rates, bottom slopes, and surface linings. If the flow 
height in the rectangular channel is also b and the circular 
channel is flowing half-full, determine the relation between 
b and D.

13–128  Consider water flow through a V-shaped channel. 
Determine the angle � the channel makes from the horizontal 
for which the flow is most efficient.

13–124  Reconsider Prob. 13–123. By varying the 
flow depth-to-radius ratio y/R from 0.1 to 1.9 

while holding the flow area constant and evaluating the flow 
rate, show that the best cross section for flow through a circu-
lar channel occurs when the channel is half-full. Tabulate and 
plot your results.

13–125  Consider the flow of water through a parabolic 
notch shown in Fig. P13–125. Develop a relation for the 
flow rate, and calculate its numerical value for the ideal case 
in which the flow velocity is given by Torricelli’s equation 
V 5 !2g(H 2 y). Answer: 0.123 m3/s

13–129  The flow rate of water in a 6-m-wide rectangular 
channel is to be measured using a 1.1-m-high sharp-crested 
rectangular weir that spans across the channel. If the head 
above the weir crest is 0.60 m upstream from the weir, deter-
mine the flow rate of water.

13–130  A rectangular channel with unfinished concrete 
surfaces is to be built to discharge water uniformly at a rate of 
6 m3/s. For the case of best cross section, determine 
the bottom width of the channel if the available vertical 
drop is (a) 1 and (b) 2 m per km.  Answers: (a) 2.65 m, 
(b) 2.32 m

13–131  Repeat Prob. 13–130 for the case of a trapezoidal 
channel of best cross section.

13–132  In practice, the V-notch is commonly used to 
measure flow rate in open channels. Using the 

idealized Torricelli’s equation V 5 !2g(H 2 y) for velocity, 
develop a relation for the flow rate through the V-notch in 
terms of the angle �. Also, show the variation of the flow rate 
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 給

出，計算其數值。(Answer: 0.123 m3/s)

13-126 水在一個底面斜率 0.5° 的渠道中流動，

其截面如圖 P13-126 所示。截面尺寸與不

同次截面的表面的曼寧係數也同樣在圖上

給出，試決定通過此渠道的流率與渠道的

等效曼寧係數。

圖 P13-126　
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13–121  Water flows through a 2.2-m-wide rectangular chan-
nel with a Manning coefficient of n � 0.012. If the water is 0.9 m 
deep and the bottom slope of the channel is 0.6�, determine the 
rate of discharge of the channel in uniform flow.

13–122  A rectangular channel with a bottom width of 7 m 
discharges water at a rate of 45 m3/s. Determine the flow 
depth below which the flow is supercritical.  Answer: 1.62 m

13–123  Consider a 1-m-internal-diameter water channel 
made of finished concrete (n � 0.012). The channel slope is 
0.002. For a flow depth of 0.32 m at the center, determine the 
flow rate of water through the channel.  Answer: 0.258 m3/s

13–126  Water flows in a channel whose bottom slope is 
0.5� and whose cross section is as shown in Fig. P13–126. 
The dimensions and the Manning coefficients for the sur-
faces of different subsections are also given on the figure. 
Determine the flow rate through the channel and the effective 
Manning coefficient for the channel.
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13–127  Consider two identical channels, one rectangular of 
bottom width b and one circular of diameter D, with identi-
cal flow rates, bottom slopes, and surface linings. If the flow 
height in the rectangular channel is also b and the circular 
channel is flowing half-full, determine the relation between 
b and D.

13–128  Consider water flow through a V-shaped channel. 
Determine the angle � the channel makes from the horizontal 
for which the flow is most efficient.

13–124  Reconsider Prob. 13–123. By varying the 
flow depth-to-radius ratio y/R from 0.1 to 1.9 

while holding the flow area constant and evaluating the flow 
rate, show that the best cross section for flow through a circu-
lar channel occurs when the channel is half-full. Tabulate and 
plot your results.

13–125  Consider the flow of water through a parabolic 
notch shown in Fig. P13–125. Develop a relation for the 
flow rate, and calculate its numerical value for the ideal case 
in which the flow velocity is given by Torricelli’s equation 
V 5 !2g(H 2 y). Answer: 0.123 m3/s

13–129  The flow rate of water in a 6-m-wide rectangular 
channel is to be measured using a 1.1-m-high sharp-crested 
rectangular weir that spans across the channel. If the head 
above the weir crest is 0.60 m upstream from the weir, deter-
mine the flow rate of water.

13–130  A rectangular channel with unfinished concrete 
surfaces is to be built to discharge water uniformly at a rate of 
6 m3/s. For the case of best cross section, determine 
the bottom width of the channel if the available vertical 
drop is (a) 1 and (b) 2 m per km.  Answers: (a) 2.65 m, 
(b) 2.32 m

13–131  Repeat Prob. 13–130 for the case of a trapezoidal 
channel of best cross section.

13–132  In practice, the V-notch is commonly used to 
measure flow rate in open channels. Using the 

idealized Torricelli’s equation V 5 !2g(H 2 y) for velocity, 
develop a relation for the flow rate through the V-notch in 
terms of the angle �. Also, show the variation of the flow rate 

725-786_cengel_ch13.indd   782 7/2/13   7:01 PM

乾淨土渠道
灌木叢

13-127 考慮兩個的渠道，其中一個是底面寬為 b 

的矩形，另一個是直徑 D 的圓形，兩者

有相同的流率、底面斜率與表面鋪面。

若矩形渠道的流動深度也是 b，而圓形渠

道則是半滿的，試決定 b 與 D 之間的關

係。

13-128 考慮水在一個 V 形渠道中流動。決定當

流動是最有效率時，渠道面與水平面之間

的夾角。

圖 P13-128　
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13–121  Water flows through a 2.2-m-wide rectangular chan-
nel with a Manning coefficient of n � 0.012. If the water is 0.9 m 
deep and the bottom slope of the channel is 0.6�, determine the 
rate of discharge of the channel in uniform flow.

13–122  A rectangular channel with a bottom width of 7 m 
discharges water at a rate of 45 m3/s. Determine the flow 
depth below which the flow is supercritical.  Answer: 1.62 m

13–123  Consider a 1-m-internal-diameter water channel 
made of finished concrete (n � 0.012). The channel slope is 
0.002. For a flow depth of 0.32 m at the center, determine the 
flow rate of water through the channel.  Answer: 0.258 m3/s

13–126  Water flows in a channel whose bottom slope is 
0.5� and whose cross section is as shown in Fig. P13–126. 
The dimensions and the Manning coefficients for the sur-
faces of different subsections are also given on the figure. 
Determine the flow rate through the channel and the effective 
Manning coefficient for the channel.
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13–127  Consider two identical channels, one rectangular of 
bottom width b and one circular of diameter D, with identi-
cal flow rates, bottom slopes, and surface linings. If the flow 
height in the rectangular channel is also b and the circular 
channel is flowing half-full, determine the relation between 
b and D.

13–128  Consider water flow through a V-shaped channel. 
Determine the angle � the channel makes from the horizontal 
for which the flow is most efficient.

13–124  Reconsider Prob. 13–123. By varying the 
flow depth-to-radius ratio y/R from 0.1 to 1.9 

while holding the flow area constant and evaluating the flow 
rate, show that the best cross section for flow through a circu-
lar channel occurs when the channel is half-full. Tabulate and 
plot your results.

13–125  Consider the flow of water through a parabolic 
notch shown in Fig. P13–125. Develop a relation for the 
flow rate, and calculate its numerical value for the ideal case 
in which the flow velocity is given by Torricelli’s equation 
V 5 !2g(H 2 y). Answer: 0.123 m3/s

13–129  The flow rate of water in a 6-m-wide rectangular 
channel is to be measured using a 1.1-m-high sharp-crested 
rectangular weir that spans across the channel. If the head 
above the weir crest is 0.60 m upstream from the weir, deter-
mine the flow rate of water.

13–130  A rectangular channel with unfinished concrete 
surfaces is to be built to discharge water uniformly at a rate of 
6 m3/s. For the case of best cross section, determine 
the bottom width of the channel if the available vertical 
drop is (a) 1 and (b) 2 m per km.  Answers: (a) 2.65 m, 
(b) 2.32 m

13–131  Repeat Prob. 13–130 for the case of a trapezoidal 
channel of best cross section.

13–132  In practice, the V-notch is commonly used to 
measure flow rate in open channels. Using the 

idealized Torricelli’s equation V 5 !2g(H 2 y) for velocity, 
develop a relation for the flow rate through the V-notch in 
terms of the angle �. Also, show the variation of the flow rate 
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13-129 在一個 6 m 寬的矩形渠道中的水流率要用

一個跨過渠道，高度為 1.1 m 的銳緣矩形

堰來量測。如果堰上游的水頭高於堰頂面 

0.60 m，試決定其水流率。

13-130 一個有粗製混凝土表面的矩形渠道要被建

造來以 6 m3/s 的流率均勻的排水。在最好

的截面的情形下，決定渠道的底面寬度：

若每 km 可用的垂直落差為 (a) 1 m，(b) 2 
圖 P13-125　
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13–121  Water flows through a 2.2-m-wide rectangular chan-
nel with a Manning coefficient of n � 0.012. If the water is 0.9 m 
deep and the bottom slope of the channel is 0.6�, determine the 
rate of discharge of the channel in uniform flow.

13–122  A rectangular channel with a bottom width of 7 m 
discharges water at a rate of 45 m3/s. Determine the flow 
depth below which the flow is supercritical.  Answer: 1.62 m

13–123  Consider a 1-m-internal-diameter water channel 
made of finished concrete (n � 0.012). The channel slope is 
0.002. For a flow depth of 0.32 m at the center, determine the 
flow rate of water through the channel.  Answer: 0.258 m3/s

13–126  Water flows in a channel whose bottom slope is 
0.5� and whose cross section is as shown in Fig. P13–126. 
The dimensions and the Manning coefficients for the sur-
faces of different subsections are also given on the figure. 
Determine the flow rate through the channel and the effective 
Manning coefficient for the channel.
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13–127  Consider two identical channels, one rectangular of 
bottom width b and one circular of diameter D, with identi-
cal flow rates, bottom slopes, and surface linings. If the flow 
height in the rectangular channel is also b and the circular 
channel is flowing half-full, determine the relation between 
b and D.

13–128  Consider water flow through a V-shaped channel. 
Determine the angle � the channel makes from the horizontal 
for which the flow is most efficient.

13–124  Reconsider Prob. 13–123. By varying the 
flow depth-to-radius ratio y/R from 0.1 to 1.9 

while holding the flow area constant and evaluating the flow 
rate, show that the best cross section for flow through a circu-
lar channel occurs when the channel is half-full. Tabulate and 
plot your results.

13–125  Consider the flow of water through a parabolic 
notch shown in Fig. P13–125. Develop a relation for the 
flow rate, and calculate its numerical value for the ideal case 
in which the flow velocity is given by Torricelli’s equation 
V 5 !2g(H 2 y). Answer: 0.123 m3/s

13–129  The flow rate of water in a 6-m-wide rectangular 
channel is to be measured using a 1.1-m-high sharp-crested 
rectangular weir that spans across the channel. If the head 
above the weir crest is 0.60 m upstream from the weir, deter-
mine the flow rate of water.

13–130  A rectangular channel with unfinished concrete 
surfaces is to be built to discharge water uniformly at a rate of 
6 m3/s. For the case of best cross section, determine 
the bottom width of the channel if the available vertical 
drop is (a) 1 and (b) 2 m per km.  Answers: (a) 2.65 m, 
(b) 2.32 m

13–131  Repeat Prob. 13–130 for the case of a trapezoidal 
channel of best cross section.

13–132  In practice, the V-notch is commonly used to 
measure flow rate in open channels. Using the 

idealized Torricelli’s equation V 5 !2g(H 2 y) for velocity, 
develop a relation for the flow rate through the V-notch in 
terms of the angle �. Also, show the variation of the flow rate 
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m。(Answer: (a) 2.65 m, (b) 2.32 m)

13-131 對有最好的截面的梯形渠道的情況，重做

習題 13-130。

13-132 在實務上，V 缺口經常被用來量測明渠

中的流率。使用理想的托利切利方程式 
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FIGURE P13–126

13–121  Water flows through a 2.2-m-wide rectangular chan-
nel with a Manning coefficient of n � 0.012. If the water is 0.9 m 
deep and the bottom slope of the channel is 0.6�, determine the 
rate of discharge of the channel in uniform flow.

13–122  A rectangular channel with a bottom width of 7 m 
discharges water at a rate of 45 m3/s. Determine the flow 
depth below which the flow is supercritical.  Answer: 1.62 m

13–123  Consider a 1-m-internal-diameter water channel 
made of finished concrete (n � 0.012). The channel slope is 
0.002. For a flow depth of 0.32 m at the center, determine the 
flow rate of water through the channel.  Answer: 0.258 m3/s

13–126  Water flows in a channel whose bottom slope is 
0.5� and whose cross section is as shown in Fig. P13–126. 
The dimensions and the Manning coefficients for the sur-
faces of different subsections are also given on the figure. 
Determine the flow rate through the channel and the effective 
Manning coefficient for the channel.
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13–127  Consider two identical channels, one rectangular of 
bottom width b and one circular of diameter D, with identi-
cal flow rates, bottom slopes, and surface linings. If the flow 
height in the rectangular channel is also b and the circular 
channel is flowing half-full, determine the relation between 
b and D.

13–128  Consider water flow through a V-shaped channel. 
Determine the angle � the channel makes from the horizontal 
for which the flow is most efficient.

13–124  Reconsider Prob. 13–123. By varying the 
flow depth-to-radius ratio y/R from 0.1 to 1.9 

while holding the flow area constant and evaluating the flow 
rate, show that the best cross section for flow through a circu-
lar channel occurs when the channel is half-full. Tabulate and 
plot your results.

13–125  Consider the flow of water through a parabolic 
notch shown in Fig. P13–125. Develop a relation for the 
flow rate, and calculate its numerical value for the ideal case 
in which the flow velocity is given by Torricelli’s equation 
V 5 !2g(H 2 y). Answer: 0.123 m3/s

13–129  The flow rate of water in a 6-m-wide rectangular 
channel is to be measured using a 1.1-m-high sharp-crested 
rectangular weir that spans across the channel. If the head 
above the weir crest is 0.60 m upstream from the weir, deter-
mine the flow rate of water.

13–130  A rectangular channel with unfinished concrete 
surfaces is to be built to discharge water uniformly at a rate of 
6 m3/s. For the case of best cross section, determine 
the bottom width of the channel if the available vertical 
drop is (a) 1 and (b) 2 m per km.  Answers: (a) 2.65 m, 
(b) 2.32 m

13–131  Repeat Prob. 13–130 for the case of a trapezoidal 
channel of best cross section.

13–132  In practice, the V-notch is commonly used to 
measure flow rate in open channels. Using the 

idealized Torricelli’s equation V 5 !2g(H 2 y) for velocity, 
develop a relation for the flow rate through the V-notch in 
terms of the angle �. Also, show the variation of the flow rate 
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 給速度，推導一個用

角度 u 表示通過 V 缺口的流率關係式，

同時展示流率隨 u 的變化，藉由計算在 

u=25°、40°、60° 與 75° 的流率，並畫出

結果。

圖 P13-132　
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with � by evaluating the flow rate for � � 25, 40, 60, and 
75�, and plotting the results.

13–133  Water flows uniformly half-full in a 3.2-m-diameter 
circular channel laid with a slope of 0.004. If the flow rate 
of water is measured to be 4.5 m3/s, determine the Manning 
coefficient of the channel and the Froude number.  Answers: 
0.0487, 0.319

13–134  Consider water flow through a wide rectangular 
channel undergoing a hydraulic jump. Show that the ratio 
of the Froude numbers before and after the jump can be 
expressed in terms of flow depths y1 and y2 before and after 
the jump, respectively, as

Fr1/Fr2 5 "(y2/y1)
3.

13–135  A sluice gate with free outflow is used to control the 
discharge rate of water through a channel. Determine the flow 
rate per unit width when the gate is raised to yield a gap of 
50 cm and the upstream flow depth is measured to be 2.8 m. 
Also determine the flow depth and the velocity downstream.

13–136  Water flowing in a wide channel at a flow depth of 
45 cm and an average velocity of 8 m/s undergoes a hydraulic 
jump. Determine the fraction of the mechanical energy of the 
fluid dissipated during this jump.  Answer: 36.9 percent

13–137  Water flowing through a sluice gate undergoes a 
hydraulic jump, as shown in Fig. P13–137. The velocity of 
the water is 1.25 m/s before reaching the gate and 4 m/s after 
the jump. Determine the flow rate of water through the gate 
per meter of width, the flow depths y1 and y2, and the energy 
dissipation ratio of the jump.

13–138  Repeat Prob. 13–137 for a velocity of 3.2 m/s 
after the hydraulic jump.

13–139  Water is discharged from a 5-m-deep lake into 
a finished concrete channel with a bottom slope of 0.004 
through a sluice gate with a 0.5-m-high opening at the bot-
tom. Shortly after supercritical uniform-flow conditions are 
established, the water undergoes a hydraulic jump. Deter-
mine the flow depth, velocity, and Froude number after 
the jump. Disregard the bottom slope when analyzing the 
hydraulic jump.

13–140  Water is discharged from a dam into a wide spill-
way to avoid overflow and to reduce the risk of flooding. 
A large fraction of the destructive power of the water is dissi-
pated by a hydraulic jump during which the water depth rises 
from 0.70 to 5.0 m. Determine the velocities of water before 
and after the jump, and the mechanical power dissipated per 
meter width of the spillway.

13–141  Water flowing in a wide horizontal channel 
approaches a 20-cm-high bump with a velocity of 1.25 m/s 
and a flow depth of 1.8 m. Determine the velocity, flow 
depth, and Froude number over the bump.

�

H � 25 cm

y

FIGURE P13–132

y3  3 m

y1

y2

V1  1.25 m/s

V3  4 m/s

Sluice gate

FIGURE P13–137

V2

y2

V1  1.25 m/s 20 cm

y1  1.8 m

FIGURE P13–141

13–142  Reconsider Prob. 13–141. Determine the bump 
height for which the flow over the bump is critical (Fr � 1).

Fundamentals of Engineering (FE) Exam Problems

13–143  Which choices are examples of open-channel flow?
I.  Flow of water in rivers
II. Draining of rainwater off highways
III. Upward draft of rain and snow
IV. Sewer lines
(a) I and II 
(b) I and III 
(c) II and III
(d ) I, II, and IV 
(e) I, II, III, and IV

13–144  If the flow depth remains constant in an open-channel 
flow, the flow is called
(a) Uniform flow 
(b) Steady flow 
(c) Varied flow
(d ) Unsteady flow 
(e) Laminar flow
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13-133 水均勻地在一個半滿的 3.2 m 直徑的圓

形渠道中流動，其斜率為 0.004。如果量

測到的水流率是 4.5 m3/s，試決定此渠

道的曼寧係數與福勞數。(Answer: 0.487, 

0.319)

13-134 考慮在一個寬矩形渠道中流動的水流經歷

了一個水躍。證明水躍前後的福勞數比

可以用水躍前後的水流深度 y1 與 y2 來表

示，成為
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with � by evaluating the flow rate for � � 25, 40, 60, and 
75�, and plotting the results.

13–133  Water flows uniformly half-full in a 3.2-m-diameter 
circular channel laid with a slope of 0.004. If the flow rate 
of water is measured to be 4.5 m3/s, determine the Manning 
coefficient of the channel and the Froude number.  Answers: 
0.0487, 0.319

13–134  Consider water flow through a wide rectangular 
channel undergoing a hydraulic jump. Show that the ratio 
of the Froude numbers before and after the jump can be 
expressed in terms of flow depths y1 and y2 before and after 
the jump, respectively, as

Fr1/Fr2 5 "(y2/y1)
3.

13–135  A sluice gate with free outflow is used to control the 
discharge rate of water through a channel. Determine the flow 
rate per unit width when the gate is raised to yield a gap of 
50 cm and the upstream flow depth is measured to be 2.8 m. 
Also determine the flow depth and the velocity downstream.

13–136  Water flowing in a wide channel at a flow depth of 
45 cm and an average velocity of 8 m/s undergoes a hydraulic 
jump. Determine the fraction of the mechanical energy of the 
fluid dissipated during this jump.  Answer: 36.9 percent

13–137  Water flowing through a sluice gate undergoes a 
hydraulic jump, as shown in Fig. P13–137. The velocity of 
the water is 1.25 m/s before reaching the gate and 4 m/s after 
the jump. Determine the flow rate of water through the gate 
per meter of width, the flow depths y1 and y2, and the energy 
dissipation ratio of the jump.

13–138  Repeat Prob. 13–137 for a velocity of 3.2 m/s 
after the hydraulic jump.

13–139  Water is discharged from a 5-m-deep lake into 
a finished concrete channel with a bottom slope of 0.004 
through a sluice gate with a 0.5-m-high opening at the bot-
tom. Shortly after supercritical uniform-flow conditions are 
established, the water undergoes a hydraulic jump. Deter-
mine the flow depth, velocity, and Froude number after 
the jump. Disregard the bottom slope when analyzing the 
hydraulic jump.

13–140  Water is discharged from a dam into a wide spill-
way to avoid overflow and to reduce the risk of flooding. 
A large fraction of the destructive power of the water is dissi-
pated by a hydraulic jump during which the water depth rises 
from 0.70 to 5.0 m. Determine the velocities of water before 
and after the jump, and the mechanical power dissipated per 
meter width of the spillway.

13–141  Water flowing in a wide horizontal channel 
approaches a 20-cm-high bump with a velocity of 1.25 m/s 
and a flow depth of 1.8 m. Determine the velocity, flow 
depth, and Froude number over the bump.
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FIGURE P13–132

y3  3 m

y1

y2

V1  1.25 m/s

V3  4 m/s

Sluice gate

FIGURE P13–137
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y2

V1  1.25 m/s 20 cm

y1  1.8 m

FIGURE P13–141

13–142  Reconsider Prob. 13–141. Determine the bump 
height for which the flow over the bump is critical (Fr � 1).

Fundamentals of Engineering (FE) Exam Problems

13–143  Which choices are examples of open-channel flow?
I.  Flow of water in rivers
II. Draining of rainwater off highways
III. Upward draft of rain and snow
IV. Sewer lines
(a) I and II 
(b) I and III 
(c) II and III
(d ) I, II, and IV 
(e) I, II, III, and IV

13–144  If the flow depth remains constant in an open-channel 
flow, the flow is called
(a) Uniform flow 
(b) Steady flow 
(c) Varied flow
(d ) Unsteady flow 
(e) Laminar flow
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13-135 一個有自由出口的水閘門被用來控制流過

一個渠道的水流率。試決定當閘門被升高

至產生一個 50 cm 的開口，並且上游量測

到的水流深度為 2.8 m 時每單位寬度的流

率。同時決定下游的水流深度與流速。

13-136 水流過一個寬渠道，水流深度 45 cm，平

均速度 8 m/s，並經歷一個水躍。試決定

在水躍過程中所消耗的流體的機械能的

比。(Answer: 36.9%)

13-137 水流經過一個水閘門時經歷了一個水躍，

如圖 P13-137 所示。水在接近閘門時的速

度是 1.25 m/s，而在水躍之後則是 4 m/s。

試決定通過閘門的水流的每單位寬度的流

率、水流深度 y1 與 y2，及水躍的能量耗

散比。

圖 P13-137　
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with � by evaluating the flow rate for � � 25, 40, 60, and 
75�, and plotting the results.

13–133  Water flows uniformly half-full in a 3.2-m-diameter 
circular channel laid with a slope of 0.004. If the flow rate 
of water is measured to be 4.5 m3/s, determine the Manning 
coefficient of the channel and the Froude number.  Answers: 
0.0487, 0.319

13–134  Consider water flow through a wide rectangular 
channel undergoing a hydraulic jump. Show that the ratio 
of the Froude numbers before and after the jump can be 
expressed in terms of flow depths y1 and y2 before and after 
the jump, respectively, as

Fr1/Fr2 5 "(y2/y1)
3.

13–135  A sluice gate with free outflow is used to control the 
discharge rate of water through a channel. Determine the flow 
rate per unit width when the gate is raised to yield a gap of 
50 cm and the upstream flow depth is measured to be 2.8 m. 
Also determine the flow depth and the velocity downstream.

13–136  Water flowing in a wide channel at a flow depth of 
45 cm and an average velocity of 8 m/s undergoes a hydraulic 
jump. Determine the fraction of the mechanical energy of the 
fluid dissipated during this jump.  Answer: 36.9 percent

13–137  Water flowing through a sluice gate undergoes a 
hydraulic jump, as shown in Fig. P13–137. The velocity of 
the water is 1.25 m/s before reaching the gate and 4 m/s after 
the jump. Determine the flow rate of water through the gate 
per meter of width, the flow depths y1 and y2, and the energy 
dissipation ratio of the jump.

13–138  Repeat Prob. 13–137 for a velocity of 3.2 m/s 
after the hydraulic jump.

13–139  Water is discharged from a 5-m-deep lake into 
a finished concrete channel with a bottom slope of 0.004 
through a sluice gate with a 0.5-m-high opening at the bot-
tom. Shortly after supercritical uniform-flow conditions are 
established, the water undergoes a hydraulic jump. Deter-
mine the flow depth, velocity, and Froude number after 
the jump. Disregard the bottom slope when analyzing the 
hydraulic jump.

13–140  Water is discharged from a dam into a wide spill-
way to avoid overflow and to reduce the risk of flooding. 
A large fraction of the destructive power of the water is dissi-
pated by a hydraulic jump during which the water depth rises 
from 0.70 to 5.0 m. Determine the velocities of water before 
and after the jump, and the mechanical power dissipated per 
meter width of the spillway.

13–141  Water flowing in a wide horizontal channel 
approaches a 20-cm-high bump with a velocity of 1.25 m/s 
and a flow depth of 1.8 m. Determine the velocity, flow 
depth, and Froude number over the bump.
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y

FIGURE P13–132

y3  3 m

y1

y2

V1  1.25 m/s

V3  4 m/s

Sluice gate

FIGURE P13–137

V2

y2

V1  1.25 m/s 20 cm

y1  1.8 m

FIGURE P13–141

13–142  Reconsider Prob. 13–141. Determine the bump 
height for which the flow over the bump is critical (Fr � 1).

Fundamentals of Engineering (FE) Exam Problems

13–143  Which choices are examples of open-channel flow?
I.  Flow of water in rivers
II. Draining of rainwater off highways
III. Upward draft of rain and snow
IV. Sewer lines
(a) I and II 
(b) I and III 
(c) II and III
(d ) I, II, and IV 
(e) I, II, III, and IV

13–144  If the flow depth remains constant in an open-channel 
flow, the flow is called
(a) Uniform flow 
(b) Steady flow 
(c) Varied flow
(d ) Unsteady flow 
(e) Laminar flow
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水閘門

13-138 若在水躍之後的流速是 3.2 m/s，重做習

題 13-137。

13-139 水從一個 5 m 深的湖泊經過一個水閘門底

部的一個 0.5 m 高的開口，排水進入一個

精製水泥的渠道。其底面斜率為 0.004。

在建立超臨界流條件的不久之後，水流經

歷一個水躍。當分析水躍時，忽略底面斜

率，試決定水躍之後的水流深度、速度與

福勞數。

13-140 水從一個水壩排水進入一個寬的洩洪道，

以避免氾濫並減少洪水的危險。水的破壞

能力的一大部分用一個水躍來破壞，其間

水的深度從 0.70 m 上升至 5.0 m。試決定

水躍前後的速度，與洩洪道每 m 寬度消

耗的機械能。

13-141 水在一個水平的寬矩形渠道中流動，以

速度 1.25 m/s 逼近一個 20 cm 高的凸起，

圖 P13-141　
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with � by evaluating the flow rate for � � 25, 40, 60, and 
75�, and plotting the results.

13–133  Water flows uniformly half-full in a 3.2-m-diameter 
circular channel laid with a slope of 0.004. If the flow rate 
of water is measured to be 4.5 m3/s, determine the Manning 
coefficient of the channel and the Froude number.  Answers: 
0.0487, 0.319

13–134  Consider water flow through a wide rectangular 
channel undergoing a hydraulic jump. Show that the ratio 
of the Froude numbers before and after the jump can be 
expressed in terms of flow depths y1 and y2 before and after 
the jump, respectively, as

Fr1/Fr2 5 "(y2/y1)
3.

13–135  A sluice gate with free outflow is used to control the 
discharge rate of water through a channel. Determine the flow 
rate per unit width when the gate is raised to yield a gap of 
50 cm and the upstream flow depth is measured to be 2.8 m. 
Also determine the flow depth and the velocity downstream.

13–136  Water flowing in a wide channel at a flow depth of 
45 cm and an average velocity of 8 m/s undergoes a hydraulic 
jump. Determine the fraction of the mechanical energy of the 
fluid dissipated during this jump.  Answer: 36.9 percent

13–137  Water flowing through a sluice gate undergoes a 
hydraulic jump, as shown in Fig. P13–137. The velocity of 
the water is 1.25 m/s before reaching the gate and 4 m/s after 
the jump. Determine the flow rate of water through the gate 
per meter of width, the flow depths y1 and y2, and the energy 
dissipation ratio of the jump.

13–138  Repeat Prob. 13–137 for a velocity of 3.2 m/s 
after the hydraulic jump.

13–139  Water is discharged from a 5-m-deep lake into 
a finished concrete channel with a bottom slope of 0.004 
through a sluice gate with a 0.5-m-high opening at the bot-
tom. Shortly after supercritical uniform-flow conditions are 
established, the water undergoes a hydraulic jump. Deter-
mine the flow depth, velocity, and Froude number after 
the jump. Disregard the bottom slope when analyzing the 
hydraulic jump.

13–140  Water is discharged from a dam into a wide spill-
way to avoid overflow and to reduce the risk of flooding. 
A large fraction of the destructive power of the water is dissi-
pated by a hydraulic jump during which the water depth rises 
from 0.70 to 5.0 m. Determine the velocities of water before 
and after the jump, and the mechanical power dissipated per 
meter width of the spillway.

13–141  Water flowing in a wide horizontal channel 
approaches a 20-cm-high bump with a velocity of 1.25 m/s 
and a flow depth of 1.8 m. Determine the velocity, flow 
depth, and Froude number over the bump.

�

H � 25 cm

y

FIGURE P13–132

y3  3 m
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y2

V1  1.25 m/s

V3  4 m/s

Sluice gate
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V1  1.25 m/s 20 cm

y1  1.8 m

FIGURE P13–141

13–142  Reconsider Prob. 13–141. Determine the bump 
height for which the flow over the bump is critical (Fr � 1).

Fundamentals of Engineering (FE) Exam Problems

13–143  Which choices are examples of open-channel flow?
I.  Flow of water in rivers
II. Draining of rainwater off highways
III. Upward draft of rain and snow
IV. Sewer lines
(a) I and II 
(b) I and III 
(c) II and III
(d ) I, II, and IV 
(e) I, II, III, and IV

13–144  If the flow depth remains constant in an open-channel 
flow, the flow is called
(a) Uniform flow 
(b) Steady flow 
(c) Varied flow
(d ) Unsteady flow 
(e) Laminar flow
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66 流 體 力 學

水流深度為 1.8 m。試決定凸起上方的速

度、水流深度與福勞數。

13-142 重新考慮習題 13-141。若凸起上方的流

動是臨界的 (Fr=1)，試求凸起高度。

基礎工程學 (FE) 試題

13-143 哪些選項是明渠流的例子？

 I.  河流中的水流

 II. 高速公路雨水的排水

 III. 向上氣流中的雨雪

 IV. 污水管道

 (a) I 與 II

 (b) I 與 III

 (c) II 與 III

 (d) I、II 與 IV

 (e) I、II、III 與 IV

13-144 如果在一個明渠流中的水流深度維持是常

數，此流動稱為

 (a) 均均流 (b) 穩定流 (c) 變動流

 (d) 不穩定流 (e) 層流

13-145 考慮水在一個高度 2 m 與寬度 5 m 的矩

形明渠中流動，水流深度是 1.5 m，此流

動的水力半徑是

 (a) 0.47 m (b) 0.94 m (c) 1.5 m

 (d) 3.8 m (e) 5m

13-146 水以 7.5 m3/s 的流率在一個寬度 5 m 的矩

形明渠中流動。此流動的臨界深度是

 (a) 5 m (b) 2.5 m (c) 1.5 m

 (d) 0.96 m (e) 0.61 m

13-147 水以 0.25 m3/s 的流率流過一個寬度 0.6 m 

的矩形明渠。如果水流深度是 0.2 m，若

流動特性要改變，什麼是替代的水流深

度？

 (a) 0.2 m (b) 0.26 m (c) 0.35 m

 (d) 0.6 m (e) 0.8 m

13-148 水以 55 m3/s 的流率在一個 6 m 寬的矩形

明渠中流動。如果水流深度是 2.4 m，福

勞數是

 (a) 0.531 (b) 0.787 (c) 1.0

 (d) 1.72 (e) 2.65

13-149 水流過一個乾淨且平直的矩形截面的自然

渠道，其底面寬度 0.75 m 且底面斜率的

角度為 0.6°。如果流動深度為 0.15 m，則

水通過渠道的流率是

 (a) 0.0317 m3/s (b) 0.05 m3/s

 (c) 0.0674 m3/s (d) 0.0866 m3/s

 (e) 1.14 m3/s

13-150 水要在一個精製混凝土渠道中以 5 m3/s 的

流率被輸送，其底面寬度為 1.2 m。渠道

底面每 500 m 長度下降 1 m。在均勻流條

件下渠道的最小高度是

 (a) 1.9 m (b) 1.5 m (c) 1.2 m

 (d) 0.92 m (e) 0.60 m

13-151 水要在一個 4 m 寬的矩形明渠中輸送。最

大化流率的流動深度是

 (a) 1 m (b) 2 m (c) 4 m

 (d) 6 m (e) 8 m

13-152 水在一個黏土板鋪面的矩形渠道中以

流率 0.8 m3/s 被輸送。渠道底面斜率是 

0.0015。渠道的最好截面寬度是

 (a) 0.68 m (b) 1.33 m (c) 1.63 m

 (d) 0.98 m (e) 1.15 m

13-153 水在一個黏土板鋪面的梯形渠道中以流

率 0.8 m3/s 被輸送。渠道底面的斜率是 

0.0015。渠道的最好截面寬度是

 (a) 0.48 m (b) 0.70 m (c) 0.84 m

 (d) 0.95 m (e) 1.22 m

13-154 水在一個底面寬度 0.85 m 的精製混凝土

的矩形渠道中均勻地流動。水流深度是 

0.4 m 與底面斜率是 0.003。此渠道應該被

分類為

 (a) 陡峭的 (b) 臨界的 (c) 溫和的

 (d) 水平的 (e) 逆向的

13-155 水從一個水閘門排水進入一個矩形水平渠

道中並經歷一個水躍。渠道為 25 m 寬且
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水躍之前的水流深度與速度分別為 2 m 與 

9 m/s。水躍之後的水流深度是

 (a) 1.26 m (b) 2 m (c) 3.61 m

 (d) 4.83 m (e) 6.55 m

13-156 水從一個水閘門排水進入一個矩形的水平

渠道中並經歷一個水躍。水躍之前的水流

深度與速度分別是 1.25 m 與 6 m/s。由於

水躍造成的可用的水頭損失百分比是

 (a) 4.7% (b) 6.2% (c) 8.5%

 (d) 13.9% (e) 17.4%

13-157 水從一個水閘門排水進入一個 7 m 寬的矩

形的水平渠道中並經歷一個水躍。水躍之

前的水流深度與速度分別是 0.65 m 與 5 

m/s。由於水躍浪費的功率能力是

 (a) 158 kW (b) 112 kW

 (c) 67.3 kW (d) 50.4 kW

 (e) 37.6 kW

13-158 水從一個 0.8 m 深的水庫排水進入一個 4 

m 寬的明渠中，排水是經過一個在渠道

底部有一個 0.1 m 高的開口的水閘門進行

的，水流深度在所有紊流都平息後是 0.5 

m。排水率是

 (a) 0.92 m3/s (b) 0.79 m3/s

 (c) 0.66 m3/s (d) 0.47 m3/s

 (e) 0.34 m3/s

13-159 在一個 3 m 寬的水平明渠中的水流率用一

個等寬度的 0.4 m 高的銳緣矩形堰量測。

若上游的水深是 0.9 m，則水的流率是

 (a) 1.37 m3/s (b) 2.22 m3/s

 (c) 3.06 m3/s (d) 4.68 m3/s

 (e) 5.11 m3/s

設計與小論文題

13-160 使用目錄或網站，得到三個不同的堰製造

商的訊息。比較不同的堰設計，並討論每

種設計的優缺點，指出每種設計最適合的

應用。

13-161 考慮水在一個 5 m 寬的矩形渠道的水平

段中的流動，範圍從 10 至 15 m3/s。一個

矩形或三角形的細板堰要被建置來量測流

率。如果水深在所有時間都要維持在 2 m 

以下，指出合適的堰的形式與尺寸。若流

動範圍是 0 到 15 m3/s，你的回答會是什

麼呢？
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